Towards a descriptive set theory for domain-like structures
暂无分享,去创建一个
[1] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[2] Armin Hemmerling. Effective metric spaces and representations of the reals , 2002, Theor. Comput. Sci..
[3] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[4] V. L. Selivanov. Classifying countable Boolean terms , 2005 .
[5] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[6] Klaus Weihrauch,et al. Computability on Computable Metric Spaces , 1993, Theor. Comput. Sci..
[7] V. L. Selivanov. Structures of the degrees of unsolvability of index sets , 1979 .
[8] Olivier Finkel,et al. Borel ranks and Wadge degrees of context free ω-languages , 2005 .
[9] V. Becher. Recursion and Topology on 2 ≤ ω for Possibly Infinite Computations , 2006 .
[10] V. L. Selivanov,et al. Difference Hierarchy in ϕ-Spaces , 2004 .
[11] Yuri Leonidovich Ershov,et al. Theory of Domains and Nearby (Invited Paper) , 1993, Formal Methods in Programming and Their Applications.
[12] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[13] Hideki Tsuiki. Compact metric spaces as minimal-limit sets in domains of bottomed sequences , 2004, Math. Struct. Comput. Sci..
[14] J. Ersov. Theorie der Numerierungen II , 1973 .
[15] John R. Steel,et al. Determinateness and the separation property , 1981, Journal of Symbolic Logic.
[16] Yu. L. Ershov,et al. The theory of A-spaces , 1973 .
[17] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[18] Victor L. Selivanov. Fine Hierarchy of Regular omega-Languages , 1995, TAPSOFT.
[19] Radha Jagadeesan,et al. A domain equation for refinement of partial systems , 2004, Mathematical Structures in Computer Science.
[20] A. Tang,et al. Wadge reducibility and Hausdorff difference hierarchy in Pω , 1981 .
[21] William W. Wadge,et al. Degrees of complexity of subsets of the baire space , 1972 .
[22] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[23] Victor L. Selivanov,et al. Wadge degrees of ω-languages of deterministic Turing machines , 2003 .
[24] Armin Hemmerling,et al. Approximate decidability in euclidean spaces , 2003, Math. Log. Q..
[25] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[26] Yu. L. Ershov. Computable functionals of finite types , 1972 .
[27] Y. Ershov. On a hierarchy of sets, II , 1968 .
[28] Armin Hemmerling,et al. The Hausdorff-Ershov Hierarchy in Euclidean Spaces , 2006, Arch. Math. Log..
[29] A. Tang. Chain Properties in P omega , 1979, Theor. Comput. Sci..
[30] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[31] Nancy Johnson,et al. Extensional Characterization of Index Sets , 1979, Math. Log. Q..
[32] Jacques Grassin. Index Sets in Ershov's Hierarchy , 1974, J. Symb. Log..
[33] Alain Louveau,et al. On the Quasi-Ordering of Borel Linear Orders under Embeddability , 1990, J. Symb. Log..
[34] F. Hausdorff. Grundzüge der Mengenlehre , 1914 .
[35] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[36] Dieter Spreen,et al. On effective topological spaces , 1998, Journal of Symbolic Logic.
[37] V. L. Selivanov,et al. Structure of powers of generalized index sets , 1982 .
[38] Vasco Brattka. Effective Borel measurability and reducibility of functions , 2005, Math. Log. Q..
[39] Viggo Stoltenberg-Hansen,et al. Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.
[40] Peter Hertling,et al. Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .
[41] Victor L. Selivanov,et al. Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.
[42] D. C. Cooper,et al. Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.
[43] Michael Huth,et al. Labelled transition systems as a Stone space , 2004, Log. Methods Comput. Sci..
[44] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[45] Juhani Karhumäki. Automata on Words , 2003, CIAA.
[46] Victor L. Selivanov,et al. Hierarchies in φ‐spaces and applications , 2005, Math. Log. Q..
[47] Verónica Becher,et al. Recursion and topology on 2<=omega for possibly infinite computations , 2004, Theor. Comput. Sci..
[48] Sören Stenlund. Computable Functionals of Finite Type , 1972 .
[49] Michael Huth. Refinement is complete for implementations , 2005, Formal Aspects of Computing.
[50] Yu. L. Ershov,et al. On a hierarchy of sets. III , 1968 .
[51] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[52] L. Kantorovitch,et al. Memoir on the Analytical Operations and Projective Sets (II) , 1932 .
[53] Michael Huth,et al. Topological Analysis of Refinement , 2006, MFCSIT.
[54] V. L. Selivanov. Some remarks about classes of recursively enumerable sets , 1978 .
[55] J. V. Tucker,et al. Effective algebras , 1995, Logic in Computer Science.
[56] V. L. Selivanov. Index sets in the hyperarithmetical hierarchy , 1984 .
[57] M. M. Choban. Operations over sets , 1975 .
[58] Yuri L. Ershov,et al. Theory of Numberings , 1999, Handbook of Computability Theory.