Autophagy Activation in Zebrafish Heart Regeneration

[1]  Matthew R. Lowerison,et al.  Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish , 2019, Disease Models & Mechanisms.

[2]  Xueying Lin,et al.  Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. , 2019, Journal of molecular and cellular cardiology.

[3]  S. Dorbala,et al.  Zebrafish model of amyloid light chain cardiotoxicity: regeneration versus degeneration. , 2019, American journal of physiology. Heart and circulatory physiology.

[4]  A. Kahana,et al.  Autophagy in Zebrafish Extraocular Muscle Regeneration. , 2019, Methods in molecular biology.

[5]  Ravi Karra,et al.  Endothelial Contributions to Zebrafish Heart Regeneration , 2018, Journal of cardiovascular development and disease.

[6]  G. Takemura,et al.  Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration , 2018, Heart Failure Reviews.

[7]  S. Shen,et al.  Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation , 2018, Cell and Tissue Research.

[8]  Y. Maejima,et al.  The Role of Autophagy in the Heart. , 2018, Annual review of physiology.

[9]  A. Kahana,et al.  Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors , 2018, PloS one.

[10]  J. Sadoshima,et al.  New Insights Into the Role of mTOR Signaling in the Cardiovascular System. , 2018, Circulation Research.

[11]  Y. Ahn,et al.  Functional Relevance of Macrophage-mediated Inflammation to Cardiac Regeneration , 2018, Chonnam medical journal.

[12]  Michael J Paulsen,et al.  Angiogenesis precedes cardiomyocyte migration in regenerating mammalian hearts , 2017, The Journal of thoracic and cardiovascular surgery.

[13]  N. Bernier,et al.  CRF and urocortin 3 protect the heart from hypoxia/reoxygenation-induced apoptosis in zebrafish. , 2017, American journal of physiology. Regulatory, integrative and comparative physiology.

[14]  A. Benz,et al.  Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation. , 2017, Journal of Molecular and Cellular Cardiology.

[15]  D. Stainier,et al.  Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration , 2017, eLife.

[16]  Nadeera M. Wickramasinghe,et al.  Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair , 2017, Cell Research.

[17]  Caroline E Burns,et al.  Zebrafish heart regeneration: 15 years of discoveries , 2017, Regeneration.

[18]  Neel R Nabar,et al.  Autophagy and inflammasomes , 2017, Molecular immunology.

[19]  Bill Cheng,et al.  Harnessing the early post-injury inflammatory responses for cardiac regeneration , 2017, Journal of Biomedical Science.

[20]  T. Vellai,et al.  Methods to Study Autophagy in Zebrafish. , 2017, Methods in enzymology.

[21]  D. Stainier,et al.  Fast revascularization of the injured area is essential to support zebrafish heart regeneration , 2016, Proceedings of the National Academy of Sciences.

[22]  C. Chu,et al.  Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury , 2016, Proceedings of the National Academy of Sciences.

[23]  D. Klionsky,et al.  Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration , 2016, Autophagy.

[24]  Y. Kawakami,et al.  Cell migration during heart regeneration in zebrafish , 2016, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  A. Jaźwińska,et al.  Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart , 2016, Open Biology.

[26]  Myra N. Chávez,et al.  Therapeutic targeting of autophagy in myocardial infarction and heart failure , 2016, Expert review of cardiovascular therapy.

[27]  Joseph A. Hill,et al.  Therapeutic targeting of autophagy in cardiovascular disease. , 2016, Journal of molecular and cellular cardiology.

[28]  D. Klionsky,et al.  Autophagy is a key factor in maintaining the regenerative capacity of muscle stem cells by promoting quiescence and preventing senescence , 2016, Autophagy.

[29]  D. Tousoulis,et al.  The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure , 2016, Heart Failure Reviews.

[30]  Sangeeta Khare,et al.  Guidelines for the use and interpretation of assays formonitoring autophagy (3rd edition) , 2016 .

[31]  N. Mizushima,et al.  Atg13 Is Essential for Autophagy and Cardiac Development in Mice , 2015, Molecular and Cellular Biology.

[32]  A. Zapata,et al.  Telomerase Is Essential for Zebrafish Heart Regeneration , 2015, Cell reports.

[33]  Johannes E. Schindelin,et al.  The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.

[34]  Arndt F. Siekmann,et al.  Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. , 2015, Developmental cell.

[35]  T. Vellai,et al.  Autophagy in zebrafish. , 2015, Methods.

[36]  B. Rothermel,et al.  Autophagy in cardiovascular biology. , 2015, The Journal of clinical investigation.

[37]  H. Abeliovich Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells , 2015, Amino Acids.

[38]  P. Riley,et al.  The epicardium signals the way towards heart regeneration , 2014, Stem cell research.

[39]  G. Lieschke,et al.  Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. , 2014, The international journal of biochemistry & cell biology.

[40]  S. Kuang,et al.  Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice. , 2014, Biochemical and biophysical research communications.

[41]  Randall T. Moon,et al.  Macrophages modulate adult zebrafish tail fin regeneration , 2014, Development.

[42]  Naoki Sato,et al.  The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. , 2014, Journal of the American College of Cardiology.

[43]  E. Olson,et al.  Macrophages are required for neonatal heart regeneration. , 2014, The Journal of clinical investigation.

[44]  M. Volpe,et al.  Mammalian target of rapamycin signaling in cardiac physiology and disease. , 2014, Circulation research.

[45]  R. Xavier,et al.  Autophagy is essential for cardiac morphogenesis during vertebrate development , 2014, Autophagy.

[46]  D. Klionsky,et al.  Autophagy is required for zebrafish caudal fin regeneration , 2013, Cell Death and Differentiation.

[47]  Philippe P Roux,et al.  Rapamycin Resistance: mTORC1 Substrates Hold Some of the Answers , 2013, Current Biology.

[48]  N. Chi,et al.  Zebrafish cardiac injury and regeneration models: a noninvasive and invasive in vivo model of cardiac regeneration. , 2013, Methods in molecular biology.

[49]  Joseph A. Hill,et al.  Cardiomyocyte autophagy: metabolic profit and loss , 2013, Heart Failure Reviews.

[50]  Juan Carlos Izpisúa Belmonte,et al.  Hypoxia Induces Myocardial Regeneration in Zebrafish , 2012, Circulation.

[51]  M. Kawasaki,et al.  Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. , 2012, Cardiovascular research.

[52]  J. Itou,et al.  Life-long preservation of the regenerative capacity in the fin and heart in zebrafish , 2012, Biology Open.

[53]  K. Poss,et al.  Clonally dominant cardiomyocytes direct heart morphogenesis , 2012, Nature.

[54]  Yanqing Huang,et al.  FRS2&agr;-Mediated FGF Signals Suppress Premature Differentiation of Cardiac Stem Cells Through Regulating Autophagy Activity , 2012, Circulation research.

[55]  Colville,et al.  Regeneration Versus Degeneration ~ , 2012 .

[56]  A. Werdich,et al.  The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion , 2011, Development.

[57]  M. Seishima,et al.  The role of autophagy emerging in postinfarction cardiac remodelling. , 2011, Cardiovascular research.

[58]  N. Mercader,et al.  Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish , 2011, Development.

[59]  T. Kurth,et al.  Regeneration of Cryoinjury Induced Necrotic Heart Lesions in Zebrafish Is Associated with Epicardial Activation and Cardiomyocyte Proliferation , 2011, PloS one.

[60]  G. Rainer,et al.  The zebrafish heart regenerates after cryoinjury-induced myocardial infarction , 2011, BMC Developmental Biology.

[61]  Dian J. Cao,et al.  Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy , 2011, Proceedings of the National Academy of Sciences.

[62]  A. Andrianopoulos,et al.  mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. , 2011, Blood.

[63]  Rahul C. Deo,et al.  Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish , 2011, Disease Models & Mechanisms.

[64]  N. Mizushima,et al.  Autophagy in mammalian development and differentiation , 2010, Nature Cell Biology.

[65]  V. Prince,et al.  Intraperitoneal Injection into Adult Zebrafish , 2010, Journal of visualized experiments : JoVE.

[66]  Ryan M. Anderson,et al.  Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes , 2010, Nature.

[67]  J. C. Belmonte,et al.  Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation , 2010, Nature.

[68]  B. Paw,et al.  Cardiac Hypertrophy Involves Both Myocyte Hypertrophy and Hyperplasia in Anemic Zebrafish , 2009, PloS one.

[69]  R A Knight,et al.  Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes , 2009, Cell Death and Differentiation.

[70]  Sang Gyun Kim,et al.  Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation , 2008, Proceedings of the National Academy of Sciences.

[71]  R. Lin,et al.  Rapamycin and mTOR kinase inhibitors , 2008, Journal of chemical biology.

[72]  Guo Xi-chao Molecular Mechanisms in Heart Failure , 2008 .

[73]  J. Richardson,et al.  Cardiac autophagy is a maladaptive response to hemodynamic stress. , 2007, The Journal of clinical investigation.

[74]  T. Noda,et al.  Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3 , 2007, Autophagy.

[75]  F. Katzen Gateway® recombinational cloning: a biological operating system , 2007, Expert opinion on drug discovery.

[76]  P. Ingham,et al.  A transgenic zebrafish model of neutrophilic inflammation. , 2006, Blood.

[77]  H. Drexler,et al.  Molecular Mechanisms in Heart Failure: Focus on Cardiac Hypertrophy, Inflammation, Angiogenesis, and Apoptosis , 2006 .

[78]  Wolfgang Rottbauer,et al.  High-throughput assay for small molecules that modulate zebrafish embryonic heart rate , 2005, Nature chemical biology.

[79]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[80]  M. Keating,et al.  Heart Regeneration in Zebrafish , 2002, Science.

[81]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[82]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.