The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions

We apply the method of fundamental solutions (MFS) for the solution of harmonic and biharmonic problems in circular domains subject to mixed boundary conditions. In contrast to the cases when boundary conditions of the same kind are prescribed on the whole boundary, for example, only Dirichlet conditions in the harmonic case, and Dirichlet and Neumann conditions in the biharmonic case, the resulting systems are neither circulant (harmonic case) nor block circulant (biharmonic case). However, by appropriately manipulating the matrices involved in the MFS discretization, the partial circulant/block circulant structure of these matrices can be exploited when certain iterative methods of solution are used for the solution of the resulting systems. This leads to efficient fast Fourier transform (FFT) algorithms which are tested on several numerical examples.

[1]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[2]  Ji Lin,et al.  The Method of Fundamental Solutions for Solving Exterior Axisymmetric Helmholtz Problems with High Wave-Number , 2013 .

[3]  M. Golberg Boundary integral methods : numerical and mathematical aspects , 1999 .

[4]  Graeme Fairweather,et al.  The method of fundamental solutions for the numerical solution of the biharmonic equation , 1987 .

[5]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[6]  Andreas Karageorghis,et al.  A matrix decomposition RBF algorithm: Approximation of functions and their derivatives , 2007 .

[7]  Ming Li,et al.  The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions , 2013, Comput. Math. Appl..

[8]  A. Karageorghis,et al.  Galerkin Formulations of the Method of Fundamental Solutions , 2013 .

[9]  Tobin A. Driscoll,et al.  Radial Basis Function Interpolation on Irregular Domain through Conformal Transplantation , 2010, J. Sci. Comput..

[10]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[11]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[12]  Graeme Fairweather,et al.  Matrix decomposition algorithms for elliptic boundary value problems: a survey , 2011, Numerical Algorithms.

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[15]  Andreas Karageorghis,et al.  A matrix decomposition MFS algorithm for certain linear elasticity problems , 2006, Numerical Algorithms.

[16]  Andreas Karageorghis,et al.  Some Aspects of the Method of Fundamental Solutions for Certain Biharmonic Problems , 2003 .

[17]  Andreas Karageorghis,et al.  Some Aspects of the Method of Fundamental Solutions for Certain Harmonic Problems , 2002, J. Sci. Comput..

[18]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[19]  Andreas Karageorghis,et al.  Efficient MFS Algorithms for Problems in Thermoelasticity , 2013, J. Sci. Comput..

[20]  Graeme Fairweather,et al.  Matrix decomposition algorithms for separable elliptic boundary value problems in two space dimensions , 1993 .

[21]  Biswa Nath Datta Numerical Linear Algebra and Applications, Second Edition , 2010 .

[22]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[23]  M. Kelmanson An integral equation method for the solution of singular slow flow problems , 1983 .

[24]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[25]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[26]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[27]  Solving Problems With Singularities Using Boundary Elements , 1989 .