Profiling users with tag networks in diffusion-based personalized recommendation

This study explores new ways of tag-based personalized recommendation by relieving the assumption that tags assigned by a user occur independently of each other. The new methods profile users using tag co-occurrence networks, upon which link-based node weighting methods (e.g. PageRank and HITS) are applied to refine the weights of tags. A diffusion process is then performed upon the tag-item bipartite graph to transform the weights of tags into recommendation scores for items. Experiments on three datasets showed improvements of the proposed method over the tag-based collaborative filtering in terms of precision and recall in the datasets with dense user-tag networks and in terms of inter-diversity in all datasets. In addition, the user-tag network is found to be a necessary instrument for the improvements. The findings of this study contribute to more accurate user profiling and personalized recommendations using network theory and have practical implications for tag-based recommendation systems.

[1]  Yi-Cheng Zhang,et al.  Effect of initial configuration on network-based recommendation , 2007, 0711.2506.

[2]  Lars Schmidt-Thieme,et al.  Tag-aware recommender systems by fusion of collaborative filtering algorithms , 2008, SAC '08.

[3]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[4]  A.P.J. van den Bosch,et al.  Collaborative and Content-based Filtering for Item Recommendation on Social Bookmarking Websites , 2009 .

[5]  Huizhi Liang,et al.  User profiling based on folksonomy information in Web 2.0 for personalized recommender systems , 2010 .

[6]  Bing-Hong Wang,et al.  Personal recommendation via unequal resource allocation on bipartite networks , 2010 .

[7]  Yi-Cheng Zhang,et al.  Information filtering via weighted heat conduction algorithm , 2011 .

[8]  Kwan Yi,et al.  Harnessing collective intelligence in social tagging using Delicious , 2012, J. Assoc. Inf. Sci. Technol..

[9]  Jun Wang,et al.  Personalization of tagging systems , 2010, Inf. Process. Manag..

[10]  Alton Yeow-Kuan Chua,et al.  Social tags for resource discovery: a comparison between machine learning and user-centric approaches , 2011, J. Inf. Sci..

[11]  Fernando González-Ladrón-de-Guevara,et al.  Uses of explicit and implicit tags in social bookmarking , 2012, J. Assoc. Inf. Sci. Technol..

[12]  Nigel Shadbolt,et al.  A Study of User Profile Generation from Folksonomies , 2008, SWKM.

[13]  Tao Mei,et al.  Personalized Video Recommendation through Graph Propagation , 2014, TOMM.

[14]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[15]  Xin Li,et al.  Tag-based social interest discovery , 2008, WWW.

[16]  Jes A. Koepfler,et al.  An experimental study of social tagging behavior and image content , 2011, J. Assoc. Inf. Sci. Technol..

[17]  Joemon M. Jose,et al.  Enriching user profiling with affective features for the improvement of a multimodal recommender system , 2009, CIVR '09.

[18]  Tsvi Kuflik,et al.  Graph-Based Recommendations: Make the Most Out of Social Data , 2014, UMAP.

[19]  Tao Luo,et al.  Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization , 2004, Data Mining and Knowledge Discovery.

[20]  John G. Breslin,et al.  Representing and sharing folksonomies with semantics , 2009, J. Inf. Sci..

[21]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[22]  Joemon M. Jose,et al.  Exploiting Social Tagging Profiles to Personalize Web Search , 2009, FQAS.

[23]  Steve Cayzer,et al.  Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access , 2007, WWW 2007.

[24]  Chunyan Miao,et al.  Folksonomy-Based Ontological User Interest Profile Modeling and Its Application in Personalized Search , 2010, AMT.

[25]  Andreas Hotho,et al.  FolkRank : A Ranking Algorithm for Folksonomies , 2006, LWA.

[26]  Kun Lu,et al.  Understanding the retrieval effectiveness of collaborative tags and author keywords in different retrieval environments: An experimental study on medical collections , 2014, J. Assoc. Inf. Sci. Technol..

[27]  Jon M Kleinberg,et al.  Hubs, authorities, and communities , 1999, CSUR.

[28]  Richi Nayak,et al.  Collaborative Filtering Recommender Systems Using Tag Information , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[29]  Alireza Noruzi,et al.  Folksonomies : (Un) controlled vocabulary? , 2006 .

[30]  Hongfei Lin,et al.  Topical community detection from mining user tagging behavior and interest , 2013, J. Assoc. Inf. Sci. Technol..

[31]  Hamed Movahedian,et al.  Folksonomy-based user interest and disinterest profiling for improved recommendations: An ontological approach , 2014, J. Inf. Sci..

[32]  Yi Zhang,et al.  Bayesian adaptive user profiling with explicit & implicit feedback , 2006, CIKM '06.

[33]  I-Ching Hsu Semantic Tag-based Profile Framework for Social Tagging Systems , 2012, Comput. J..

[34]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[35]  Yi-Cheng Zhang,et al.  Collaborative filtering with diffusion-based similarity on tripartite graphs , 2009, ArXiv.

[36]  Hyun Hee Kim,et al.  Toward video semantic search based on a structured folksonomy , 2011, J. Assoc. Inf. Sci. Technol..

[37]  Yi-Cheng Zhang,et al.  Personalized Recommendation via Integrated Diffusion on User-Item-Tag Tripartite Graphs , 2009, ArXiv.

[38]  Michael Cardew-Hall,et al.  The folksonomy tag cloud: when is it useful? , 2008, J. Inf. Sci..

[39]  Christian Bauckhage,et al.  I tag, you tag: translating tags for advanced user models , 2010, WSDM '10.

[40]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..