The ultrametric Gromov-Wasserstein distance

In this paper, we investigate compact ultrametric measure spaces which form a subset U of the collection of all metric measure spaces M. Similar as for the ultrametric Gromov-Hausdorff distance on the collection of ultrametric spaces U , we define ultrametric versions of two metrics on U, namely of Sturm’s distance of order p and of the GromovWasserstein distance of order p. We study the basic topological and geometric properties of these distances as well as their relation and derive for p “ 8 a polynomial time algorithm for their calculation. Further, several lower bounds for both distances are derived and some of our results are generalized to the case of finite ultra-dissimilarity spaces.

[1]  D. Robinson Comparison of labeled trees with valency three , 1971 .

[2]  C. Mallows A Note on Asymptotic Joint Normality , 1972 .

[3]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[4]  S. S. Vallender Calculation of the Wasserstein Distance Between Probability Distributions on the Line , 1974 .

[5]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[6]  J. Hein Reconstructing evolution of sequences subject to recombination using parsimony. , 1990, Mathematical biosciences.

[7]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[8]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[9]  Norman R. Howes,et al.  Modern Analysis and Topology , 1995 .

[10]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[11]  Arne Ø. Mooers,et al.  Inferring Evolutionary Process from Phylogenetic Tree Shape , 1997, The Quarterly Review of Biology.

[12]  Stephen Semmes,et al.  Fractured fractals and broken dreams : self-similar geometry through metric and measure , 1997 .

[13]  Chitra Dorai,et al.  3D object recognition: Representation and matching , 2000, Stat. Comput..

[14]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[15]  David G. Lowe,et al.  Local feature view clustering for 3D object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[17]  Guillermo Sapiro,et al.  Comparing point clouds , 2004, SGP '04.

[18]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[19]  Gromov-Hausdorff ultrametric , 2005, math/0511437.

[20]  Olivier François,et al.  Which random processes describe the tree of life? A large-scale study of phylogenetic tree imbalance. , 2006, Systematic biology.

[21]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Kantorovich On the Translocation of Masses , 2006 .

[23]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[24]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[25]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[26]  Alexander M. Bronstein,et al.  Topology-Invariant Similarity of Nonrigid Shapes , 2009, International Journal of Computer Vision.

[27]  Alfred M. Bruckstein,et al.  Partial Similarity of Objects, or How to Compare a Centaur to a Horse , 2009, International Journal of Computer Vision.

[28]  Colin A. Russell,et al.  The Global Circulation of Seasonal Influenza A (H3N2) Viruses , 2008, Science.

[29]  E. Klavins,et al.  Model reduction of stochastic processes using Wasserstein pseudometrics , 2008, 2008 American Control Conference.

[30]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[31]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[32]  Anita Winter,et al.  Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees) , 2009 .

[33]  Derong Qiu Geometry of non-Archimedean Gromov-Hausdorff distance , 2008, 0812.4822.

[34]  Ronitt Rubinfeld,et al.  Sublinear Time Algorithms for Earth Mover’s Distance , 2009, Theory of Computing Systems.

[35]  Thomas B. Kepler,et al.  A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza , 2010, Journal of The Royal Society Interface.

[36]  Facundo Mémoli,et al.  Department of Mathematics , 1894 .

[37]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[38]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[39]  Ilya Safro,et al.  Algebraic Distance on Graphs , 2011, SIAM J. Sci. Comput..

[40]  Gavin J. D. Smith,et al.  Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. , 2012, The Journal of general virology.

[41]  Karl-Theodor Sturm The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces , 2012, 1208.0434.

[42]  Facundo Mémoli,et al.  Some Properties of Gromov–Hausdorff Distances , 2012, Discret. Comput. Geom..

[43]  Darius Burschka,et al.  Rigid 3D geometry matching for grasping of known objects in cluttered scenes , 2012, Int. J. Robotics Res..

[44]  Ruben Abagyan,et al.  Methods of protein structure comparison. , 2012, Methods in molecular biology.

[45]  S. Evans,et al.  The phylogenetic Kantorovich–Rubinstein metric for environmental sequence samples , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[46]  Gunther H. Weber,et al.  Interleaving Distance between Merge Trees , 2013 .

[47]  Andrew McGregor,et al.  Sketching Earth-Mover Distance on Graph Metrics , 2013, APPROX-RANDOM.

[48]  Trevor Bedford,et al.  Viral Phylodynamics , 2013, PLoS Comput. Biol..

[49]  Shang-Hong Lai,et al.  3D object detection and pose estimation from depth image for robotic bin picking , 2014, 2014 IEEE International Conference on Automation Science and Engineering (CASE).

[50]  B. Shraiman,et al.  How to Infer Relative Fitness from a Sample of Genomic Sequences , 2012, Genetics.

[51]  Julien Rabin,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[52]  M. Lässig,et al.  A predictive fitness model for influenza , 2014, Nature.

[53]  Kyle Fox,et al.  Computing the Gromov-Hausdorff Distance for Metric Trees , 2015, ISAAC.

[54]  高津 飛鳥 書評 Cedric Villani : Optimal Transport : Old and New , 2015 .

[55]  Benoît R. Kloeckner A geometric study of Wasserstein spaces: ultrametrics , 2013, 1304.5219.

[56]  Kwok Pui Choi,et al.  On joint subtree distributions under two evolutionary models. , 2015, Theoretical population biology.

[57]  Gabriel Peyré,et al.  Gromov-Wasserstein Averaging of Kernel and Distance Matrices , 2016, ICML.

[58]  Samir Chowdhury,et al.  Hierarchical representations of network data with optimal distortion bounds , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[59]  David Lopez-Paz,et al.  Geometrical Insights for Implicit Generative Modeling , 2017, Braverman Readings in Machine Learning.

[60]  Felix Schmiedl,et al.  Computational Aspects of the Gromov–Hausdorff Distance and its Application in Non-rigid Shape Matching , 2017, Discret. Comput. Geom..

[61]  Samir Chowdhury,et al.  The Gromov-Wasserstein distance between networks and stable network invariants , 2018, Information and Inference: A Journal of the IMA.

[62]  Tommi S. Jaakkola,et al.  Gromov-Wasserstein Alignment of Word Embedding Spaces , 2018, EMNLP.

[63]  Megan Owen,et al.  Geometric comparison of phylogenetic trees with different leaf sets , 2018, ArXiv.

[64]  C. Colijn,et al.  A Metric on Phylogenetic Tree Shapes , 2016, bioRxiv.

[65]  Julia A. Palacios,et al.  A Metric Space of Ranked Tree Shapes and Ranked Genealogies , 2019, bioRxiv.

[66]  A. Morozov Extension of Colijn-Plazotta tree shape distance metric to unrooted trees , 2018 .

[67]  Volkmar Liebscher,et al.  New Gromov-Inspired Metrics on Phylogenetic Tree Space , 2018, Bulletin of mathematical biology.

[68]  Kenji Fukumizu,et al.  Tree-Sliced Variants of Wasserstein Distances , 2019, NeurIPS.

[69]  Zane T. Smith,et al.  Gromov-Hausdorff distances on $p$-metric spaces and ultrametric spaces , 2019 .

[70]  Nicolas Courty,et al.  Optimal Transport for structured data with application on graphs , 2018, ICML.

[71]  Yusu Wang,et al.  FPT-algorithms for computing Gromov-Hausdorff and interleaving distances between trees , 2018, ESA.

[72]  Stefanie Jegelka,et al.  Learning Generative Models across Incomparable Spaces , 2019, ICML.

[73]  Roland Badeau,et al.  Generalized Sliced Wasserstein Distances , 2019, NeurIPS.

[74]  Nicolas Courty,et al.  Sliced Gromov-Wasserstein , 2019, NeurIPS.

[75]  Nadia El-Mabrouk,et al.  The complexity of comparing multiply-labelled trees by extending phylogenetic-tree metrics , 2018, Theor. Comput. Sci..

[76]  A novel construction of Urysohn universal ultrametric space via the Gromov-Hausdorff ultrametric , 2020, 2007.08105.

[77]  Yihe Dong,et al.  COPT: Coordinated Optimal Transport on Graphs , 2020, NeurIPS.

[78]  Pengyu Liu,et al.  Polynomial Phylogenetic Analysis of Tree Shapes , 2020, bioRxiv.

[79]  Samir Chowdhury,et al.  Generalized Spectral Clustering via Gromov-Wasserstein Learning , 2020, AISTATS.