Parametric Resampling Methods for Retrospective Changepoint Analysis

Changepoint analysis is a useful tool in environmental statistics in that it provides a methodology for threshold detection and modeling processes subject to periodic changes in the underlying model due to anthropogenic effects or natural phenomena. Several applications of changepoint analysis are investigated here. The use of inappropriate changepoint detection methods is first discussed and the need for a simple, flexible, correct method is established and such a method is proposed for the mean-shift model. Data from the Everglades, Florida, USA is used to showcase the methodology in a realworld setting. An extension to the case of time-series data represented via transition matrices is presented as a result of joint work with Matt Williams (Department of Statistics, Virginia Tech) and rainfall data from Kenya, Africa is presented as a case-study. Finally the multivariate changepoint problem is addressed by a two-stage approach beginning with dimension reduction via principal component analysis (PCA). After the dimension reduction step the location of the changepoint in principal component space is estimated and assuming at most one change in a mean-shift setting, all possible submodels are investigated.

[1]  W. A. Shewhart,et al.  Statistical method from the viewpoint of quality control , 1939 .

[2]  D. Robertson,et al.  Identifying Biotic Integrity and Water Chemistry Relations in Nonwadeable Rivers of Wisconsin: Toward the Development of Nutrient Criteria , 2007, Environmental management.

[3]  Jaromír Antoch,et al.  Permutation tests in change point analysis , 2001 .

[4]  N. Schenker,et al.  On Judging the Significance of Differences by Examining the Overlap Between Confidence Intervals , 2001 .

[5]  Joseph P. Romano Bootstrap and randomization tests of some nonparametric hypotheses , 1989 .

[6]  Chung-Bow Lee,et al.  Bayesian analysis of a change-point in exponential families with applications , 1998 .

[7]  E. Carlstein Nonparametric Change-Point Estimation , 1988 .

[8]  Ransom A. Myers,et al.  Still more spawner-recruitment curves: the hockey stick and its generalizations , 2000 .

[9]  Anthony N. Pettitt,et al.  A simple cumulative sum type statistic for the change-point problem with zero-one observations , 1980 .

[10]  K. Rutchey,et al.  MULTIPLE REGIME SHIFTS IN A SUBTROPICAL PEATLAND: COMMUNITY‐SPECIFIC THRESHOLDS TO EUTROPHICATION , 2008 .

[11]  Douglas M. Hawkins,et al.  A Multivariate Change-Point Model for Statistical Process Control , 2006, Technometrics.

[12]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[13]  M. Srivastava,et al.  On Tests for Detecting Change in Mean , 1975 .

[14]  Dale M Robertson,et al.  Linkages Between Nutrients and Assemblages of Macroinvertebrates and Fish in Wadeable Streams: Implication to Nutrient Criteria Development , 2007, Environmental management.

[15]  L. A. Gardner On Detecting Changes in the Mean of Normal Variates , 1969 .

[16]  Tests for multiple change points under ordered alternatives , 2003 .

[17]  Bayesian change points analysis on the seismic activity in northeastern Taiwan , 2005 .

[18]  James R. Schott,et al.  Principles of Multivariate Analysis: A User's Perspective , 2002 .

[19]  P. Mccormick,et al.  Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA , 2009, Hydrobiologia.

[20]  Y. Son,et al.  Bayesian single change point detection in a sequence of multivariate normal observations , 2005 .

[21]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[22]  M. Evans Statistical Distributions , 2000 .

[23]  Changliang Zou,et al.  Empirical likelihood ratio test for the change-point problem , 2007 .

[24]  T. Lai SEQUENTIAL ANALYSIS: SOME CLASSICAL PROBLEMS AND NEW CHALLENGES , 2001 .

[25]  E. Feuer,et al.  Permutation tests for joinpoint regression with applications to cancer rates. , 2000, Statistics in medicine.

[26]  Ashish Sen,et al.  On tests for detecting change in mean when variance is unknown , 1975 .

[27]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[28]  E. S. Page A test for a change in a parameter occurring at an unknown point , 1955 .

[29]  Changepoint detection in SPI transition probabilities , 2010 .

[30]  R. Quandt The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes , 1958 .

[31]  George W. Ryan,et al.  On The Misuse Of Confidence Intervals For Two Means In Testing For The Significance Of The Difference Between The Means , 2002 .

[32]  A. F. Smith A Bayesian approach to inference about a change-point in a sequence of random variables , 1975 .

[33]  David E. Claridge,et al.  A Four-Parameter Change-Point Model for Predicting Energy Consumption in Commercial Buildings , 1992 .

[34]  Richard A. Johnson,et al.  Nonparametric Tests for Shift at an Unknown Time Point , 1968 .

[35]  Sergio M. Vicente-Serrano,et al.  Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin , 2005 .

[36]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[37]  Wayne C. Palmer,et al.  Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index , 1968 .

[38]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[39]  L. Dümbgen The Asymptotic Behavior of Some Nonparametric Change-Point Estimators , 1991 .

[40]  D. Siegmund,et al.  Tests for a change-point , 1987 .

[41]  P. Kokoszka,et al.  Change-Point Detection With Non-Parametric Regression , 2002 .

[42]  Jie Chen,et al.  Likelihood procedure for testing change point hypothesis for multivariate Gaussian model , 1995 .

[43]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[44]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[45]  Douglas M. Hawkins,et al.  Statistical Process Control for Shifts in Mean or Variance Using a Changepoint Formulation , 2005, Technometrics.

[46]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[47]  A. C. Rencher Methods of multivariate analysis , 1995 .

[48]  H. Chernoff,et al.  ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANGES IN TIME , 1964 .

[49]  Hira L. Koul,et al.  Asymptotics of maximum likelihood estimator in a two-phase linear regression model , 2002 .

[50]  D. Hudson Fitting Segmented Curves Whose Join Points Have to Be Estimated , 1966 .

[51]  Song S. Qian,et al.  Two statistical methods for the detection of environmental thresholds , 2003 .

[52]  J. F. Paul,et al.  DEVELOPMENT OF EMPIRICAL, GEOGRAPHICALLY SPECIFIC WATER QUALITY CRITERIA: A CONDITIONAL PROBABILITY ANALYSIS APPROACH 1 , 2005 .

[53]  L. S. Pereira,et al.  Drought class transition analysis through Markov and Loglinear models, an approach to early warning , 2005 .

[54]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[55]  S. Fotopoulos,et al.  Estimating the unknown change point in the parameters of the lognormal distribution , 2007 .

[56]  Douglas M. Hawkins,et al.  The Changepoint Model for Statistical Process Control , 2003 .

[57]  Qi Li,et al.  On Hotelling's Approach to Hypothesis Testing When a Nuisance Parameter Is Present Only under the Alternative , 2007 .

[58]  K. Worsley Testing for a Two-Phase Multiple Regression , 1983 .

[59]  H. Müller CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .

[60]  C. Loader CHANGE POINT ESTIMATION USING NONPARAMETRIC REGRESSION , 1996 .

[61]  S. Newman,et al.  Spatio-temporal patterns of soil phosphorus enrichment in Everglades water conservation area 2A. , 2001, Journal of environmental quality.

[62]  Mahmoud A. Mahmoud,et al.  A change point method for linear profile data , 2007, Qual. Reliab. Eng. Int..

[63]  Tests for a Change Point in the Shape Parameter of Gamma Random Variables , 2005 .

[64]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .

[65]  F. Ramsey,et al.  The Statistical Sleuth , 1996 .

[66]  Curtis J. Richardson,et al.  Integrating Bioassessment and Ecological Risk Assessment: An Approach to Developing Numerical Water-Quality Criteria , 2003, Environmental management.

[67]  Mark S. Myers,et al.  Sediment quality thresholds: Estimates from hockey stick regression of liver lesion prevalence in english sole (Pleuronectes vetulus) , 1998 .

[68]  Edit Gombay,et al.  An application of the maximum likelihood test to the change-point problem , 1994 .

[69]  Satterthwaite Fe An approximate distribution of estimates of variance components. , 1946 .

[70]  Robert B. Davies,et al.  Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case , 2002 .

[71]  L. Horváth,et al.  The Maximum Likelihood Method for Testing Changes in the Parameters of Normal Observations , 1993 .

[72]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[73]  D. Siegmund,et al.  The likelihood ratio test for a change-point in simple linear regression , 1989 .

[74]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[75]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[76]  Stergios B. Fotopoulos,et al.  Capturing the distributional behaviour of the maximum likelihood estimator of a changepoint , 1999 .

[77]  N. Guttman COMPARING THE PALMER DROUGHT INDEX AND THE STANDARDIZED PRECIPITATION INDEX 1 , 1998 .

[78]  R. Davies Hypothesis Testing when a Nuisance Parameter is Present Only Under the Alternatives , 1987 .

[79]  S. Julious Inference and estimation in a changepoint regression problem , 2001 .

[80]  P. K. Bhattacharya,et al.  Some aspects of change-point analysis , 1994 .

[81]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[82]  J. Pignatiello,et al.  A change point model for the location parameter of exponential family densities , 2008 .

[83]  M. Johns Importance Sampling for Bootstrap Confidence Intervals , 1988 .

[84]  Guaranteed maximum likelihood splitting tests of a linear regression model , 2006 .

[85]  L. Pereira,et al.  Analysis of SPI drought class transitions using loglinear models , 2006 .

[86]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[87]  F. E. Satterthwaite An approximate distribution of estimates of variance components. , 1946, Biometrics.

[88]  David E. Claridge,et al.  A Change-Point Principal Component Analysis (CP/PCA) Method for Predicting Energy Usage in Commercial Buildings: The PCA Model , 1993 .

[89]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[90]  The likelihood ratio method for testing changes in the parameters of double exponential observations , 2003 .

[91]  Peter C Austin,et al.  A brief note on overlapping confidence intervals. , 2002, Journal of vascular surgery.

[92]  Binbing Yu,et al.  Comparability of Segmented Line Regression Models , 2004, Biometrics.

[93]  Michael C. Fu,et al.  Guest editorial , 2003, TOMC.

[94]  P. Perron,et al.  Computation and Analysis of Multiple Structural-Change Models , 1998 .

[95]  Marie Husková,et al.  Permutation tests for multiple changes , 2001, Kybernetika.

[96]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[97]  R. Quandt Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes , 1960 .