The marked Brauer category

We introduce the marked Brauer algebra and the marked Brauer category. These generalize the analogous constructions for the ordinary Brauer algebra to the setting of a homogeneous bilinear form on a $\mathbb{Z}_2$-graded vector space. We classify the simple modules of the marked Brauer algebra over any field of characteristic not two. Under suitable assumptions we show that the marked Brauer algebra is in Schur-Weyl duality with the Lie superalgebra, $\mathfrak{g}$, of linear maps which leave the bilinear form invariant. We also provide a classification of the indecomposable summands of the tensor powers of the natural representation for $\mathfrak{g}$ under those same assumptions. In particular, our results generalize Moon's work on the Lie superalgebra of type $\mathfrak{p}(n)$ and provide a unifying conceptual explanation for his results.

[1]  M. Visscher,et al.  Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra , 2010, 1009.4064.

[2]  C. Stroppel,et al.  Gradings on walled Brauer algebras and Khovanov’s arc algebra , 2011, 1107.0999.

[3]  D. Bump Compact Operators , 2011 .

[4]  J. Brundan,et al.  A basis theorem for the affine oriented Brauer category and its cyclotomic quotients , 2014, 1404.6574.

[5]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[6]  J. Comes DELIGNE’S CATEGORY Rep(GLδ) AND REPRESENTATIONS OF GENERAL LINEAR SUPERGROUPS , 2012 .

[7]  Quantum walled Brauer-Clifford superalgebras , 2014, 1404.0443.

[8]  C. Stroppel,et al.  Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra , 2014, 1412.7853.

[9]  Changchang Xi,et al.  A characteristic free approach to Brauer algebras , 2000 .

[10]  G. Lehrer,et al.  THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOGONAL GROUP , 2011, 1102.3221.

[11]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[12]  Benjamin J. Wilson,et al.  Deligne’s category \underline{}(_{}) and representations of general linear supergroups , 2012 .

[13]  Hermann Boerner,et al.  Über die rationalen Darstellungen der allgemeinen linearen Gruppe , 1948 .

[14]  Mixed Schur-Weyl-Sergeev duality for queer Lie superalgebras , 2012, 1208.5139.

[15]  Arun Ram,et al.  Tensor product representations for orthosymplectic Lie superalgebras , 1996, math/9607232.

[16]  Ge Li A KLR Grading of the Brauer Algebras , 2014, 1409.1195.

[17]  Jun Hu,et al.  On tensor spaces for Birman–Murakami–Wenzl algebras , 2010 .

[18]  M. Visscher,et al.  Alcove geometry and a translation principle for the Brauer algebra , 2008, 0807.3892.

[19]  Changchang Xi,et al.  Cellular Algebras: Inflations and Morita Equivalences , 1999 .

[20]  Richard Brauer,et al.  On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .

[21]  P. Martin,et al.  The blocks of the Brauer algebra in characteristic zero , 2006, math/0601387.

[22]  Dongho Moon Tensor Product Representations of the Lie Superalgebra 𝔭(n) and Their Centralizers , 2003 .

[23]  G. Lehrer,et al.  THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2014, Nagoya Mathematical Journal.

[24]  R. B. Zhang,et al.  The Brauer Category and Invariant Theory , 2012, 1207.5889.

[25]  G. Lehrer,et al.  Cellular algebras , 1996 .

[26]  J. Zhou,et al.  On ω-Lie superalgebras , 2017, Journal of Algebra and Its Applications.