The marked Brauer category
暂无分享,去创建一个
[1] M. Visscher,et al. Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra , 2010, 1009.4064.
[2] C. Stroppel,et al. Gradings on walled Brauer algebras and Khovanov’s arc algebra , 2011, 1107.0999.
[3] D. Bump. Compact Operators , 2011 .
[4] J. Brundan,et al. A basis theorem for the affine oriented Brauer category and its cyclotomic quotients , 2014, 1404.6574.
[5] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[6] J. Comes. DELIGNE’S CATEGORY Rep(GLδ) AND REPRESENTATIONS OF GENERAL LINEAR SUPERGROUPS , 2012 .
[7] Quantum walled Brauer-Clifford superalgebras , 2014, 1404.0443.
[8] C. Stroppel,et al. Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra , 2014, 1412.7853.
[9] Changchang Xi,et al. A characteristic free approach to Brauer algebras , 2000 .
[10] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOGONAL GROUP , 2011, 1102.3221.
[11] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[12] Benjamin J. Wilson,et al. Deligne’s category \underline{}(_{}) and representations of general linear supergroups , 2012 .
[13] Hermann Boerner,et al. Über die rationalen Darstellungen der allgemeinen linearen Gruppe , 1948 .
[14] Mixed Schur-Weyl-Sergeev duality for queer Lie superalgebras , 2012, 1208.5139.
[15] Arun Ram,et al. Tensor product representations for orthosymplectic Lie superalgebras , 1996, math/9607232.
[16] Ge Li. A KLR Grading of the Brauer Algebras , 2014, 1409.1195.
[17] Jun Hu,et al. On tensor spaces for Birman–Murakami–Wenzl algebras , 2010 .
[18] M. Visscher,et al. Alcove geometry and a translation principle for the Brauer algebra , 2008, 0807.3892.
[19] Changchang Xi,et al. Cellular Algebras: Inflations and Morita Equivalences , 1999 .
[20] Richard Brauer,et al. On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .
[21] P. Martin,et al. The blocks of the Brauer algebra in characteristic zero , 2006, math/0601387.
[22] Dongho Moon. Tensor Product Representations of the Lie Superalgebra 𝔭(n) and Their Centralizers , 2003 .
[23] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2014, Nagoya Mathematical Journal.
[24] R. B. Zhang,et al. The Brauer Category and Invariant Theory , 2012, 1207.5889.
[25] G. Lehrer,et al. Cellular algebras , 1996 .
[26] J. Zhou,et al. On ω-Lie superalgebras , 2017, Journal of Algebra and Its Applications.