Continuous Motion Scan Ptychography: Characterization for Increased Speed in Coherent X-ray Imaging References and Links Chemical Composition Mapping with Nanometre Resolution by Soft X-ray Microscopy, " Nature

Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.

Tom Peterka | Stefan Vogt | Chris Jacobsen | Rob Ross | Junjing Deng | Youssef S G Nashed | O. Bunk | A. Peele | J. Rodenburg | K. Jefimovs | M. Dierolf | C. Kewish | A. Hurst | M. Guizar‐Sicairos | M. Burghammer | R. Horisberger | D. Vine | E. Weckert | I. Vartanyants | J. Gulden | H. Quiney | C. Jacobsen | T. Peterka | P. Kraft | E. Eikenberry | C. Brönnimann | G. Woloschak | K. Giewekemeyer | N. Zettsu | J. Maser | A. Bergamaschi | Junjing Deng | Si Chen | S. Vogt | Q. Jin | L. Finney | J. Patommel | P. Boye | J. Vila-Comamala | S. Stephan | R. Hoppe | S. Schöder | E. Färm | A. Mantion | P. Karvinen | C. Quitmann | K. Brister | Y. Nashed | B. Henrich | M. Bartels | C. Roehrig | N. Phillips | E. Härkönen | B. Hornberger | M. Holler | A. Menzel | R. Dinapoli | Rob Ross | A. Mozzanica | R. Mak | Padmore | X. Shi | J. Deng | C. Flachenecker | S. Gleber | M. Bolbat | I. Spink | Si Chen | Nicholas W Phillips | David J Vine | H. Ohashi | M. Priebe | X-ray | K. Yamauchi | B. Schmitt | A. Watanabe | Y. Senba | D. Trapp | G. Theidel | J. van der Veen | S. Vogt | R. Wepf | H. Stadler | M Guizar-Sicairos | P Thibault | C. David | F. Pfeiffer | Rodenburg | A. Cullis | B. Dobson | M Dierolf | P. Thibault | P. Schneider | J N Clark | X. Huang | R. Harder | H M L Faulkner | I. Johnson | C. G. Schroer | D. Samberg | Z. Chen | Y. Yuan | I. K. Robinson | A. Suzuki | Si Chen | Nicholas W Phillips | Tom Peterka | C. Jacobsen | D. Vine | A Schropp | C M Kewish | J. Feldkamp | R. N. Wilke | T. Salditt | A. Mancuso | Hard | J Vila-Comamala | A. Diaz | Y Takahashi | Y. Kohmura | T. Ishikawa | Towards | Y.-S A Shapiro | T. T. Yu | R. Andjordi Cabana | W. Celestre | K. Chao | A. L. D. Kaznatcheev | F. M. Kilcoyne | Y. S. Andstefano Marchesini | T. Meng | L. L. Warwick | H. A. Yang | D. Pelliccia | C. Holzner | S. Baines | A. Berry | I. Mcnulty | K. Nugent | R N Wilke | Ptychographic | M Holler | M. Ritala | J. Raabe | M Bech | R Dinapoli | E. Schmid | A. Schreiber | M Eriksson | P M Pelz | E Lombi | E. Jonge | C. G. Donner | D. Ryan | Paterson | S Flewett | C. Tran | I Inoue | Y. Shinohara | Y. Amemiya | S G Podorov | K. M. Pavlov | D. Paganin | S Chen | D. Shu | B. Lai | T. Paunesku | J. Osinski | J. Steele | J. Irwin | M. Feser | E. Snyder

[1]  Christian G. Schroer,et al.  Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging , 2010 .

[2]  B. Schmitt,et al.  EIGER: Next generation single photon counting detector for X-ray applications , 2011 .

[3]  S. Marchesini,et al.  Chemical composition mapping with nanometre resolution by soft X-ray microscopy , 2014, Nature Photonics.

[4]  Andreas Menzel,et al.  Reconstructing state mixtures from diffraction measurements , 2013, Nature.

[5]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[6]  Tim Salditt,et al.  Hard x-ray nanobeam characterization by coherent diffraction microscopy , 2010 .

[7]  Ian K Robinson,et al.  Continuous scanning mode for ptychography. , 2014, Optics letters.

[8]  B. Lai,et al.  The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities , 2013, Journal of synchrotron radiation.

[9]  Manuel Guizar-Sicairos,et al.  Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging. , 2011, Optics express.

[10]  Kazuto Yamauchi,et al.  Towards high-resolution ptychographic x-ray diffraction microscopy , 2011 .

[11]  D. Paterson,et al.  Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors , 2011, Analytical and bioanalytical chemistry.

[12]  F. Roberts,et al.  A Flying-spot Microscope , 1951, Nature.

[13]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[14]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[15]  O. Bunk,et al.  Contrast mechanisms in scanning transmission x-ray microscopy , 2009 .

[16]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[17]  K. Nugent,et al.  Simultaneous X-ray fluorescence and ptychographic microscopy of Cyclotella meneghiniana. , 2012, Optics express.

[18]  Franz Pfeiffer,et al.  Ptychographic characterization of the wavefield in the focus of reflective hard X-ray optics. , 2010, Ultramicroscopy.

[19]  Jesse N. Clark,et al.  Dynamic imaging using ptychography. , 2014, Physical review letters.

[20]  O. Bunk,et al.  Quantitative x-ray phase nanotomography , 2012 .

[21]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[22]  T Salditt,et al.  Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction. , 2012, Optics express.

[23]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[24]  O. Bunk,et al.  Influence of the overlap parameter on the convergence of the ptychographical iterative engine. , 2008, Ultramicroscopy.

[25]  O. Bunk,et al.  X-ray imaging with the PILATUS 100k detector. , 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[26]  Tom Peterka,et al.  Parallel ptychographic reconstruction. , 2014, Optics express.

[27]  O. Bunk,et al.  X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution , 2014, Scientific Reports.

[28]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[29]  A. Menzel,et al.  On-the-fly scans for X-ray ptychography , 2014 .

[30]  Chanh Q Tran,et al.  Extracting coherent modes from partially coherent wavefields. , 2009, Optics letters.

[31]  Yoshiyuki Amemiya,et al.  Effect of shot noise on X-ray speckle visibility spectroscopy. , 2012, Optics express.

[32]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[33]  O. Bunk,et al.  High-throughput ptychography using Eiger: scanning X-ray nano-imaging of extended regions. , 2014, Optics express.

[34]  J. F. van der Veen,et al.  Diffraction-limited storage rings - a window to the science of tomorrow. , 2014, Journal of synchrotron radiation.

[35]  D. Paganin,et al.  A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. , 2007, Optics express.