Geometric source separation: algorithms and applications

[1]  Fabian J. Theis,et al.  Overcomplete ICA with a Geometric Algorithm , 2002, ICANN.

[2]  Fabian J Theis,et al.  Adaptive signal analysis of immunological data , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[3]  Elmar Lang,et al.  Simulated annealing and density estimation for the separation of sources , 2000 .

[4]  Fabian J. Theis,et al.  Maximum Entropy and Minimal Mutual Information in a Nonlinear Model , 2001 .

[5]  M. Bartlett,et al.  Face image analysis by unsupervised learning and redundancy reduction , 1998 .

[6]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .

[7]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[8]  Terrence J. Sejnowski,et al.  Learning Nonlinear Overcomplete Representations for Efficient Coding , 1997, NIPS.

[9]  Richard M. Everson,et al.  A flexible non-linearity and decorrelating manifold approach to ICA , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[10]  Fabian J. Theis,et al.  Comparison of maximum entropy and minimal mutual information in a nonlinear setting , 2002, Signal Process..

[11]  Fabian J. Theis,et al.  Mathematics in independent component analysis , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[12]  E. Lukács,et al.  A Property of the Normal Distribution , 1954 .

[13]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[14]  Ana Maria Tomé AN ITERATIVE EIGENDECOMPOSITION APPROACH TO BLIND SOURCE SEPARATION , 2001 .

[15]  Fabian J. Theis,et al.  Neural network signal analysis in immunology , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[16]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[17]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[18]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[19]  Ali Mansour,et al.  Blind Separation of Sources , 1999 .

[20]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[21]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[22]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[23]  Fabian J. Theis,et al.  Extending Geometric ICA to Overcomplete and High-Dimensional BSS-Problems , 2002 .

[24]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[25]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[26]  Fabian J. Theis,et al.  A Theoretical Framework for Overcomplete Geometric BMMR , 2002 .

[27]  Fabian J. Theis,et al.  Pattern Repulsion Revisited , 2001, IWANN.

[28]  Juha Karhunen,et al.  Local Independent Component Analysis Using Clustering , 1999 .

[29]  Michael Herrmann,et al.  Perspectives and limitations of self-organizing maps , 1996 .

[30]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[31]  Jean-Francois Cardoso,et al.  INDEPENDENT COMPONENT ANALYSIS OF THE COSMIC MICROWAVE BACKGROUND , 2003 .

[32]  Fabian J. Theis,et al.  A Geometric ICA Procedure Based on a Lattice of the Observation Space , 2003 .

[33]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[34]  Fabian J. Theis,et al.  A Generalized Eigendecomposition Approach Using Matrix Pencils to Remove Artefacts from 2D NMR Spectra , 2003, IWANN.

[35]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[36]  Fabian J. Theis,et al.  Blind Source Separation of Water Artefacts in NMR Spectra using a Matrix Pencil , 2003 .

[37]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[38]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[39]  Fabian J Theis,et al.  Formalization of the Two-Step Approach to Overcomplete BSS , 2002 .

[40]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[41]  Alberto Prieto,et al.  Separation of Speech Signals for Nonlinear Mixtures , 1999, IWANN.

[42]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[43]  A. J. Bell,et al.  INDEPENDENT COMPONENT ANALYSIS OF BIOMEDICAL SIGNALS , 2000 .

[44]  D. Ruderman The statistics of natural images , 1994 .

[45]  A. Hyvarinen,et al.  On existence and uniqueness of solutions in nonlinear independent component analysis , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[46]  Christian Jutten,et al.  Nonlinear source separation: the post-nonlinear mixtures , 1997, ESANN.

[47]  Juha Karhunen,et al.  A Maximum Likelihood Approach to Nonlinear Blind Source Separation , 1997, ICANN.

[48]  Pierre Comon,et al.  Blind channel identification and extraction of more sources than sensors , 1998, Optics & Photonics.

[49]  M. Girolami Negentropy and Kurtosis as Projection Pursuit Indices Provide Generalised ICA Algorithms , 1996, NIPS 1996.

[50]  Carlos G. Puntonet,et al.  Neural net approach for blind separation of sources based on geometric properties , 1998, Neurocomputing.

[51]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[52]  Fabian J. Theis,et al.  Removing water artefacts from 2D protein NMR spectra using GEVD with congruent matrix pencils , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[53]  Gilles Pagès,et al.  Two or three things that we know about the Kohonen algorithm , 1994, ESANN.

[54]  Ralph Linsker,et al.  Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network , 1992, Neural Computation.

[55]  Fabian J. Theis Geometric ICA in overcomplete and high-dimensional settings , 2002 .

[56]  Fabian J. Theis,et al.  An Improved Geometric Overcomplete Blind Source Separation Algorithm , 2009, IWANN.

[57]  Fabian J. Theis,et al.  SOMICA and geometric ICA , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[58]  Fabian J. Theis,et al.  Generalizing Geometric ICA to Nonlinear Settings , 2009, IWANN.

[59]  Shun-ichi Amari,et al.  Learned parametric mixture based ICA algorithm , 1998, Neurocomputing.

[60]  Fabian J. Theis,et al.  A geometric algorithm for overcomplete linear ICA , 2004, Neurocomputing.

[61]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[62]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[63]  Shun-ichi Amari,et al.  Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information , 1997, Neural Computation.

[64]  Fabian J. Theis,et al.  SOMICA - an application of self-organizing maps to geometric independent component analysis , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[65]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[66]  H. H. Yang,et al.  A stochastic natural gradient descent algorithm for blind signal separation , 1996, Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop.

[67]  Fabian J. Theis,et al.  A HISTOGRAM-BASED OVERCOMPLETE ICA ALGORITHM , 2003 .

[68]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[69]  Fabian J Theis,et al.  Local features in biomedical image clusters extracted with independent component analysis , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[70]  Zhi Ding,et al.  A matrix-pencil approach to blind separation of colored nonstationary signals , 2000, IEEE Trans. Signal Process..

[71]  Fabian J. Theis,et al.  Linear Geometric ICA: Fundamentals and Algorithms , 2003, Neural Computation.

[72]  ' F.Rojas,et al.  A NEW ICA METHOD BASED ON A LATTICE OF THE OBSERVATION SPACE , 2004 .

[73]  J. L. Hodges,et al.  The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .

[74]  Juha Karhunen,et al.  Local Linear Independent Component Analysis Based on Clustering , 2000, Int. J. Neural Syst..

[75]  Julio Ortega Lopera,et al.  Separation of sources: A geometry-based procedure for reconstruction of n-valued signals , 1995, Signal Process..

[76]  Calyampudi R. Rao,et al.  Characterization Problems in Mathematical Statistics , 1976 .

[77]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[78]  Te-Won Lee,et al.  Nonlinear approaches to Independent Component Analysis , 2000 .

[79]  B. Rollins,et al.  Chemokines and disease , 2001, Nature Immunology.

[80]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[81]  Patrik O. Hoyer,et al.  EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING , 2003 .

[82]  Marian Stewart Bartlett,et al.  Independent components of face images : A representation for face recognition , 1997 .

[83]  Henry Leung,et al.  Separation of a mixture of chaotic signals , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[84]  S. Sheather Density Estimation , 2004 .

[85]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[86]  Nuno Ferreira,et al.  On-line source separation of temporally correlated signals , 2002, 2002 11th European Signal Processing Conference.

[87]  Ignacio Rojas,et al.  A New Geometrical ICA-based Method for Blind Separation of Speech Signals , 2003, IWANN.

[88]  A.M. Tome Blind source separation using a matrix pencil , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[89]  Fabian J. Theis,et al.  FastGeo - A Histogram Based Approach to Linear Geometric ICA , 2001 .

[90]  Gilles Pagès,et al.  Convergence of the one-dimensional Kohonen algorithm , 1998, Advances in Applied Probability.

[91]  Ali Mansour,et al.  Separation of sources using simulated annealing and competitive learning , 2002, Neurocomputing.

[92]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[93]  G. Darmois,et al.  Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .

[94]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[95]  Fabian J. Theis,et al.  Geometric overcomplete ICA , 2002, ESANN.

[96]  Fabian J. Theis,et al.  An Adaptive Approach to Blind Source Separation Using a Self-Organzing Map and a Neural Gas , 2009, IWANN.

[97]  Elmar Lang,et al.  Adaptive-geometric methods: Application to the separation of EEG signals , 2000 .

[98]  Fabian J. Theis,et al.  A new geometrical method of BSS on a lattice of the space of observations , 2003 .

[99]  Fabian J. Theis,et al.  Nonlinear Geometric ICA , 2003 .

[100]  V. Koivunen,et al.  Identifiability and Separability of Linear Ica Models Revisited , 2003 .

[101]  M. Cottrell,et al.  Etude d'un processus d'auto-organisation , 1987 .

[102]  A. Zlotnik,et al.  The biology of chemokines and their receptors. , 2000, Annual review of immunology.

[103]  Fabian J. Theis,et al.  How to generalize geometric ICA to higher dimensions , 2002, ESANN.

[104]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[105]  H. Ritter,et al.  Convergence properties of Kohonen's topology conserving maps: fluctuations, stability, and dimension selection , 1988, Biological Cybernetics.

[106]  Ralph Linsker,et al.  An Application of the Principle of Maximum Information Preservation to Linear Systems , 1988, NIPS.

[107]  A. Hyvärinen,et al.  Nonlinear Blind Source Separation by Self-Organizing Maps , 1996 .

[108]  Simon Haykin,et al.  Neural networks , 1994 .