The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample
暂无分享,去创建一个
D. Gerdes | O. Lahav | F. Castander | P. Fosalba | D. Bacon | M. Sullivan | A. Rosell | K. Honscheid | R. Ogando | M. Kind | R. Gruendl | A. Palmese | J. Annis | R. Kessler | M. Sako | S. Allam | D. Brout | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | T. Abbott | S. Ávila | E. Bertin | D. Brooks | D. Burke | J. Carretero | S. Desai | P. Doel | B. Flaugher | D. Gruen | G. Gutiérrez | D. Hollowood | D. James | K. Kuehn | N. Kuropatkin | M. Lima | J. Marshall | F. Menanteau | R. Miquel | A. Plazas | A. Romer | S. Serrano | E. Suchyta | G. Tarlé | A. Walker | D. Scolnic | J. Garc'ia-Bellido | A. Moller | E. Sánchez | T. Davis | P. Martini | D. Thomas | L. Galbany | A. Kim | M. Aguena | A. Möller | M. Smith | C. Lidman | S. Hinton | S. Uddin | F. Paz-Chinchón | R. Morgan | M. Costanzi | S. Everett | C. Frohmaier | C. Guti'errez | P. Wiseman | T. Varga | R. Wilkinson | A. Carnero Rosell | M. Carrasco Kind | L. D. da Costa | C. S'anchez | I. Ferrero | C. To | A. Fert'e | L. Kelsey | M. Grayling | M. Vincenzi | L. Costa | J. Marshall | D. Thomas | Tamara M. Davis | D. James | J. Marshall | R. Miquel | David Bacon | C. Gutiérrez | R. Kessler | Mark Sullivan | C. Sánchez | J. García-Bellido
[1] W. M. Wood-Vasey,et al. Are Type Ia Supernovae in Rest-frame H Brighter in More Massive Galaxies? , 2020, The Astrophysical Journal.
[2] S. E. Persson,et al. The Carnegie Supernova Project-I: Correlation between Type Ia Supernovae and Their Host Galaxies from Optical to Near-infrared Bands , 2020, The Astrophysical Journal.
[3] D. Brout,et al. It’s Dust: Solving the Mysteries of the Intrinsic Scatter and Host-galaxy Dependence of Standardized Type Ia Supernova Brightnesses , 2020, The Astrophysical Journal.
[4] N. E. Sommer,et al. First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity , 2020, Monthly Notices of the Royal Astronomical Society.
[5] N. E. Sommer,et al. Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses , 2020, Monthly Notices of the Royal Astronomical Society.
[6] N. E. Sommer,et al. First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy , 2018, The Astronomical Journal.
[7] C. Tao,et al. Strong dependence of Type Ia supernova standardization on the local specific star formation rate , 2018, Astronomy & Astrophysics.
[8] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[9] Stephen Kent,et al. Dark Energy Survey’s Observation Strategy, Tactics, and Exposure Scheduler , 2019, 1912.06254.
[10] F. Shankar,et al. Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steel. , 2019, Monthly Notices of the Royal Astronomical Society.
[11] Y. University,et al. Environmental Dependence of Type Ia Supernova Luminosities from the YONSEI Supernova Catalog , 2019, 1908.10375.
[12] U. Paris-sud,et al. PÉGASE.3: A code for modeling the UV-to-IR/submm spectral and chemical evolution of galaxies with dust , 2019, Astronomy & Astrophysics.
[13] P. Garnavich,et al. Think Global, Act Local: The Influence of Environment Age and Host Mass on Type Ia Supernova Light Curves , 2019, The Astrophysical Journal.
[14] M. Sullivan,et al. First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation , 2018, The Astrophysical Journal.
[15] N. E. Sommer,et al. First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases , 2018, Monthly Notices of the Royal Astronomical Society.
[16] M. Sullivan,et al. First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release , 2018, The Astrophysical Journal.
[17] N. E. Sommer,et al. FIRST COSMOLOGY RESULTS USING TYPE IA SUPERNOVAE FROM THE DARK ENERGY SURVEY: ANALYSIS, SYSTEMATIC UNCERTAINTIES, AND VALIDATION , 2019 .
[18] N. E. Sommer,et al. First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Survey Overview and Supernova Spectroscopy , 2018 .
[19] David O. Jones,et al. Should Type Ia Supernova Distances Be Corrected for Their Local Environments? , 2018, The Astrophysical Journal.
[20] J. Tinker,et al. The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.
[21] W. M. Wood-Vasey,et al. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation , 2018, 1802.01589.
[22] M. Sullivan,et al. The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.
[23] B. Yanny,et al. The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.
[24] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[25] Armin Rest,et al. The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.
[26] David O. Jones,et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.
[27] I. Hook,et al. Dependence of Type Ia supernova luminosities on their local environment , 2017, Astronomy & Astrophysics.
[28] S. P. Littlefair,et al. THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .
[29] M. Sullivan,et al. Environmental Dependence of Type Ia Supernova Luminosities from a Sample without a Local–Global Difference in Host Star Formation , 2017, 1801.01192.
[30] K. Maguire,et al. Type Ia Supernovae , 2017 .
[31] J. Mould,et al. The Influence of Host Galaxies in Type Ia Supernova Cosmology , 2017, 1709.05830.
[32] C. Kobayashi,et al. Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙ , 2017, 1705.03173.
[33] R. Kessler,et al. Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples , 2016, 1610.04677.
[34] Durham,et al. It is not easy being green: the evolution of galaxy colour in the EAGLE simulation , 2016, 1601.07907.
[35] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[36] M. Sullivan,et al. THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.
[37] Adam G. Riess,et al. RECONSIDERING THE EFFECTS OF LOCAL STAR FORMATION ON TYPE Ia SUPERNOVA COSMOLOGY , 2015, 1506.02637.
[38] C. Baltay,et al. CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.
[39] J. Lyman,et al. On the environments of Type Ia supernovae within host galaxies , 2014, 1412.6315.
[40] C. Wolf,et al. Ages of Type Ia supernovae over cosmic time , 2014, 1409.2951.
[41] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[42] J. Prieto,et al. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey , 2014, 1401.3317.
[43] Filippo Mannucci,et al. Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.
[44] C. Baltay,et al. Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H$\alpha$ , 2013, 1309.1182.
[45] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[46] J. Silk. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES , 2013, 1305.5840.
[47] C. Tao,et al. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY , 2013, 1304.4720.
[48] L. Kewley,et al. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES , 2012, 1211.7062.
[49] R. Nichol,et al. SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy , 2012, 1211.1386.
[50] M. Sullivan,et al. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.
[51] R. Nichol,et al. IMPROVED CONSTRAINTS ON TYPE Ia SUPERNOVA HOST GALAXY PROPERTIES USING MULTI-WAVELENGTH PHOTOMETRY AND THEIR CORRELATIONS WITH SUPERNOVA PROPERTIES , 2011, 1107.6003.
[52] M. Sullivan,et al. SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.
[53] C. Badenes,et al. Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae , 2011, 1102.1586.
[54] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[55] P. Best,et al. Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.
[56] Adam G. Riess,et al. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.
[57] M. Sullivan,et al. The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.
[58] C. Badenes,et al. METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY–WIDTH RELATIONSHIP , 2010, 1002.0681.
[59] J. Silk. Feedback in Galaxy Formation , 2008, Proceedings of the International Astronomical Union.
[60] R. Kirshner,et al. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.
[61] J. Neill,et al. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE , 2009, 0911.0690.
[62] Jake Vanderplas,et al. SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.
[63] S. E. Woosley,et al. The diversity of type Ia supernovae from broken symmetries , 2009, Nature.
[64] Armin Rest,et al. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.
[65] I. Hook,et al. THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56Ni YIELD IN TYPE Ia SUPERNOVAE , 2008, 0810.0031.
[66] C. Lintott,et al. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.
[67] M. Sullivan,et al. SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.
[68] J. Brinkmann,et al. THE ORIGIN OF THE MASS–METALLICITY RELATION: INSIGHTS FROM 53,000 STAR-FORMING GALAXIES IN THE SDSS , 2008 .
[69] M. Sullivan,et al. K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.
[70] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[71] J. Neill,et al. Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.
[72] J. Neill,et al. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.
[73] Iap,et al. The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.
[74] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[75] W. Hillebrandt,et al. The Case against the progenitor's carbon - to - oxygen ratio as a source of peak luminosity variations in Type Ia supernovae , 2004, astro-ph/0403509.
[76] F. Timmes,et al. TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .
[77] R. Nichol,et al. The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.
[78] R. Bacon,et al. Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.
[79] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[80] Jordi Isern i Vilaboy. L'Institut d'Estudis Espacials de Catalunya (IEEC) , 2001 .
[81] Edward L. Fitzpatrick,et al. Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.
[82] I. Hook,et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.
[83] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[84] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[85] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[86] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[87] William Press,et al. A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.
[88] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[89] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .