The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample

Analyses of Type Ia supernovae (SNe Ia) have found puzzling correlations between their standardized luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey 3-yr spectroscopically confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U − R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U − R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light-curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U − R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U − R rms scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U − R environments.

[1]  W. M. Wood-Vasey,et al.  Are Type Ia Supernovae in Rest-frame H Brighter in More Massive Galaxies? , 2020, The Astrophysical Journal.

[2]  S. E. Persson,et al.  The Carnegie Supernova Project-I: Correlation between Type Ia Supernovae and Their Host Galaxies from Optical to Near-infrared Bands , 2020, The Astrophysical Journal.

[3]  D. Brout,et al.  It’s Dust: Solving the Mysteries of the Intrinsic Scatter and Host-galaxy Dependence of Standardized Type Ia Supernova Brightnesses , 2020, The Astrophysical Journal.

[4]  N. E. Sommer,et al.  First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  N. E. Sommer,et al.  Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  N. E. Sommer,et al.  First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy , 2018, The Astronomical Journal.

[7]  C. Tao,et al.  Strong dependence of Type Ia supernova standardization on the local specific star formation rate , 2018, Astronomy & Astrophysics.

[8]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[9]  Stephen Kent,et al.  Dark Energy Survey’s Observation Strategy, Tactics, and Exposure Scheduler , 2019, 1912.06254.

[10]  F. Shankar,et al.  Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steel. , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  Y. University,et al.  Environmental Dependence of Type Ia Supernova Luminosities from the YONSEI Supernova Catalog , 2019, 1908.10375.

[12]  U. Paris-sud,et al.  PÉGASE.3: A code for modeling the UV-to-IR/submm spectral and chemical evolution of galaxies with dust , 2019, Astronomy & Astrophysics.

[13]  P. Garnavich,et al.  Think Global, Act Local: The Influence of Environment Age and Host Mass on Type Ia Supernova Light Curves , 2019, The Astrophysical Journal.

[14]  M. Sullivan,et al.  First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation , 2018, The Astrophysical Journal.

[15]  N. E. Sommer,et al.  First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  M. Sullivan,et al.  First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release , 2018, The Astrophysical Journal.

[17]  N. E. Sommer,et al.  FIRST COSMOLOGY RESULTS USING TYPE IA SUPERNOVAE FROM THE DARK ENERGY SURVEY: ANALYSIS, SYSTEMATIC UNCERTAINTIES, AND VALIDATION , 2019 .

[18]  N. E. Sommer,et al.  First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Survey Overview and Supernova Spectroscopy , 2018 .

[19]  David O. Jones,et al.  Should Type Ia Supernova Distances Be Corrected for Their Local Environments? , 2018, The Astrophysical Journal.

[20]  J. Tinker,et al.  The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.

[21]  W. M. Wood-Vasey,et al.  PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation , 2018, 1802.01589.

[22]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[23]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[24]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[25]  Armin Rest,et al.  The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.

[26]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[27]  I. Hook,et al.  Dependence of Type Ia supernova luminosities on their local environment , 2017, Astronomy & Astrophysics.

[28]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[29]  M. Sullivan,et al.  Environmental Dependence of Type Ia Supernova Luminosities from a Sample without a Local–Global Difference in Host Star Formation , 2017, 1801.01192.

[30]  K. Maguire,et al.  Type Ia Supernovae , 2017 .

[31]  J. Mould,et al.  The Influence of Host Galaxies in Type Ia Supernova Cosmology , 2017, 1709.05830.

[32]  C. Kobayashi,et al.  Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙ , 2017, 1705.03173.

[33]  R. Kessler,et al.  Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples , 2016, 1610.04677.

[34]  Durham,et al.  It is not easy being green: the evolution of galaxy colour in the EAGLE simulation , 2016, 1601.07907.

[35]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[36]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[37]  Adam G. Riess,et al.  RECONSIDERING THE EFFECTS OF LOCAL STAR FORMATION ON TYPE Ia SUPERNOVA COSMOLOGY , 2015, 1506.02637.

[38]  C. Baltay,et al.  CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.

[39]  J. Lyman,et al.  On the environments of Type Ia supernovae within host galaxies , 2014, 1412.6315.

[40]  C. Wolf,et al.  Ages of Type Ia supernovae over cosmic time , 2014, 1409.2951.

[41]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[42]  J. Prieto,et al.  The Data Release of the Sloan Digital Sky Survey-II Supernova Survey , 2014, 1401.3317.

[43]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[44]  C. Baltay,et al.  Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H$\alpha$ , 2013, 1309.1182.

[45]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[46]  J. Silk UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES , 2013, 1305.5840.

[47]  C. Tao,et al.  HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY , 2013, 1304.4720.

[48]  L. Kewley,et al.  THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES , 2012, 1211.7062.

[49]  R. Nichol,et al.  SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy , 2012, 1211.1386.

[50]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[51]  R. Nichol,et al.  IMPROVED CONSTRAINTS ON TYPE Ia SUPERNOVA HOST GALAXY PROPERTIES USING MULTI-WAVELENGTH PHOTOMETRY AND THEIR CORRELATIONS WITH SUPERNOVA PROPERTIES , 2011, 1107.6003.

[52]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[53]  C. Badenes,et al.  Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae , 2011, 1102.1586.

[54]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[55]  P. Best,et al.  Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.

[56]  Adam G. Riess,et al.  THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.

[57]  M. Sullivan,et al.  The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.

[58]  C. Badenes,et al.  METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY–WIDTH RELATIONSHIP , 2010, 1002.0681.

[59]  J. Silk Feedback in Galaxy Formation , 2008, Proceedings of the International Astronomical Union.

[60]  R. Kirshner,et al.  HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.

[61]  J. Neill,et al.  THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE , 2009, 0911.0690.

[62]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[63]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[64]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[65]  I. Hook,et al.  THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56Ni YIELD IN TYPE Ia SUPERNOVAE , 2008, 0810.0031.

[66]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[67]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[68]  J. Brinkmann,et al.  THE ORIGIN OF THE MASS–METALLICITY RELATION: INSIGHTS FROM 53,000 STAR-FORMING GALAXIES IN THE SDSS , 2008 .

[69]  M. Sullivan,et al.  K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.

[70]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[71]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[72]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[73]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[74]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[75]  W. Hillebrandt,et al.  The Case against the progenitor's carbon - to - oxygen ratio as a source of peak luminosity variations in Type Ia supernovae , 2004, astro-ph/0403509.

[76]  F. Timmes,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .

[77]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[78]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.

[79]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[80]  Jordi Isern i Vilaboy L'Institut d'Estudis Espacials de Catalunya (IEEC) , 2001 .

[81]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[82]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[83]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[84]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[85]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[86]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[87]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[88]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[89]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .