Hydrogen-bond directionality at the donor H atom—analysis of interaction energies and database statistics

A thorough analysis has been performed on the effects of varying the angle at the donor hydrogen in hydrogen bonds using database studies and ab initio intermolecular interaction energy calculations. Non-activated C–H⋯acceptor interactions are seen to have a weak energy dependence on the D–H⋯A angle, but for all of the conventional hydrogen-bonds studied the D–H⋯A angle has a range of 40–65° within an energy penalty of RT (2.5 kJ mol−1). Interactions with D–H⋯A angle in the range 120–140° are seen to have substantially reduced stabilisation energies and angles below 120° are generally unlikely to correspond to significant interactions.

[1]  A. Gavezzotti Non-conventional bonding between organic molecules. The ‘halogen bond’ in crystalline systems , 2008 .

[2]  P. Wood,et al.  Dipolar C[triple-bond]N...C[triple-bond]N interactions in organic crystal structures: database analysis and calculation of interaction energies. , 2008, Acta crystallographica. Section B, Structural science.

[3]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[4]  J. Novoa,et al.  On the hydrogen bond nature of the C–H⋯F interactions in molecular crystals. An exhaustive investigation combining a crystallographic database search and ab initio theoretical calculations , 2008 .

[5]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[6]  J. Dunitz,et al.  Alloxan: Is it really a problem structure? , 2007 .

[7]  G. Day,et al.  Importance of Molecular Shape for the Overall Stability of Hydrogen Bond Motifs in the Crystal Structures of Various Carbamazepine-Type Drug Molecules , 2007 .

[8]  David K. Henderson,et al.  Effect of pressure on the crystal structure of salicylaldoxime-I, and the structure of salicylaldoxime-II at 5.93 GPa. , 2006, Acta crystallographica. Section B, Structural science.

[9]  J. Dunitz,et al.  Molecular pair analysis: C-H...F interactions in the crystal structure of fluorobenzene? And related matters. , 2006, Chemistry.

[10]  Gautam R Desiraju,et al.  C-H...O and other weak hydrogen bonds. From crystal engineering to virtual screening. , 2005, Chemical communications.

[11]  A. Gavezzotti Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part I. Philosophy , 2003 .

[12]  Anthony L. Spek,et al.  Journal of , 1993 .

[13]  I. Dance Distance criteria for crystal packing analysis of supramolecular motifs , 2003 .

[14]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[15]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[16]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[17]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[18]  I. Pálinkó,et al.  The C-H...Cl hydrogen bond: Does it exist? , 1999 .

[19]  Frank H. Allen,et al.  Carbonyl-carbonyl interactions can be competitive with hydrogen bonds , 1998 .

[20]  Robin Taylor,et al.  On the hydrogen bonding abilities of phenols and anisoles , 1997 .

[21]  F. Allen,et al.  Hydrogen‐Bond Acceptor Properties of Nitro‐O Atoms: A Combined Crystallographic Database and Ab Initio Molecular Orbital Study , 1997 .

[22]  T. Steiner Unrolling the hydrogen bond properties of C–H···O interactions , 1997 .

[23]  Robin Taylor,et al.  Organic Fluorine Hardly Ever Accepts Hydrogen Bonds , 1997 .

[24]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[25]  Frank H. Allen,et al.  The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen , 1996 .

[26]  Raymond E. Davis,et al.  Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals , 1995 .

[27]  I. Alkorta,et al.  Theoretical Study of CH.cntdot..cntdot..cntdot.O Hydrogen Bonds in H2O-CH3F, H2O-CH2F2, and H2O-CHF3 , 1995 .

[28]  Anthony J. Stone,et al.  Computation of charge-transfer energies by perturbation theory , 1993 .

[29]  F. H. Allen,et al.  A systematic pairwise comparison of geometric parameters obtained by X-ray and neutron diffraction , 1986 .

[30]  E. Paulus,et al.  Stereocontrol in isoxazoline reductions. Synthesis of aminodeoxy-DL-xylo- and arabino-pentose derivatives from furoisoxazolines , 1985 .

[31]  Olga Kennard,et al.  Hydrogen-bond geometry in organic crystals , 1984 .

[32]  Anthony J. Stone,et al.  An intermolecular perturbation theory for the region of moderate overlap , 1984 .

[33]  Olga Kennard,et al.  Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds , 1982 .

[34]  J. Kroon,et al.  Non-linearity of hydrogen bonds in molecular crystals , 1974, Nature.

[35]  A. Bondi van der Waals Volumes and Radii , 1964 .