STRUCTURE AND RELAXATION OF END-LINKED POLYMER NETWORKS

The kinetics of end crosslinking a linear polymer melt and the dynamics of the resulting network is studied using molecular dynamics (MD) simulations. Starting from equilibrated melts of linear chains of length ranging from 1/3Ne to 3Ne, where Ne is the entanglement length, tetrafunctional crosslinkers are attached to a fraction x of the chain ends. When a free end comes within a short capture distance rx from an unsaturated crosslinker, the chain ends are attached. With a stoichmetric number x of crosslinkers, the long time kinetics for the number of free ends and the number of unsaturated crosslinkers decays as a power law in time t−a, with a≊0.5 for the present range of chain lengths. The resulting networks are then used to study the effect of entanglements on the motion of the crosslinks and the modulus of the network. Using a cluster search algorithm, the microscopic characteristics of the networks are determined. This allows us to compare our simulated networks to theoretical models of rubber elasti...

[1]  W. Graessley,et al.  Rubber Elasticity of Well-Characterized Polybutadiene Networks , 1979 .

[2]  K. Iwata Topological rubber‐elasticity theory. III. Comparison of rigidities computed for model tetra‐functional networks with experiments , 1985 .

[3]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[4]  J. Scanlan The effect of network flaws on the elastic properties of vulcanizates , 1960 .

[5]  J. H. Weiner,et al.  Monomer-Level Description of Stress and Birefringence Relaxation in Polymer Melts , 1994 .

[6]  F. Boué,et al.  Brownian motion of chains and crosslinks in a permanently linked network: The dynamic form factor , 1988 .

[7]  S F Edwards,et al.  The statistical mechanics of polymerized material , 1967 .

[8]  Sam F. Edwards,et al.  The theory of rubber elasticity , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  T. Vilgis Rubber elasticity and inhomogeneities in crosslink density , 1992 .

[10]  W. Graessley Entangled linear, branched and network polymer systems — Molecular theories , 1982 .

[11]  G. Heinrich,et al.  Rubber elasticity of polymer networks: Theories , 1988 .

[12]  J. E. Mark,et al.  Molecular interpretation of the moduli of elastomeric polymer networks of known structure , 1984 .

[13]  M. Kość “Belt-loop” model of chain entanglement , 1988 .

[14]  M. Schulz,et al.  Monte Carlo studies of polymer network formation , 1992 .

[15]  N. Goldenfeld,et al.  Statistical Mechanics of Vulcanisation and the Spontaneous Emergence of Static-Density Fluctuations , 1993 .

[16]  G. Ronca,et al.  An approach to rubber elasticity with internal constraints , 1975 .

[17]  J. E. Mark,et al.  Chain dimensions and fluctuations in random elastomeric networks. 2. Dependence of chain dimensions and fluctuations on macroscopic strain , 1989 .

[18]  Richter,et al.  Dynamic fluctuations of crosslinks in a rubber: A neutron-spin-echo study. , 1988, Physical review letters.

[19]  G. Grest,et al.  Statistical properties of random cross-linked rubbers , 1990 .

[20]  G. Grest,et al.  Erratum: Dynamics of entangled polymer melts: A molecular‐dynamics simulation [J. Chem. Phys. 92, 5057 (1990)] , 1991 .

[21]  B. Erman,et al.  Relationships between stress, strain, and molecular constitution of polymer networks. Comparison of theory with experiments , 1982 .

[22]  P. Higgs,et al.  Polydisperse polymer networks : elasticity, orientational properties, and small angle neutron scattering , 1988 .

[23]  Kurt Kremer,et al.  Kinetics and relaxation of end crosslinked polymer networks , 1993 .

[24]  N. R. Langley Elastically Effective Strand Density in Polymer Networks , 1968 .

[25]  T. A. Vilgis,et al.  The van der Waals-network — a phenomenological approach to dense networks , 1984 .

[26]  G. Marrucci Rubber elasticity theory. A network of entangled chains , 1981 .

[27]  R. Gaylord Entanglement and excluded volume effects in rubber elasticity , 1979 .

[28]  Kurt Kremer,et al.  Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles , 1989 .

[29]  P. Pincus,et al.  A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit , 1983 .

[30]  Redner,et al.  Fluctuation-dominated kinetics in diffusion-controlled reactions. , 1985, Physical review. A, General physics.

[31]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[32]  G. Grest,et al.  A comparison between integral equation theory and molecular dynamics simulations of dense, flexible polymer liquids , 1989 .

[33]  P. Flory,et al.  Statistical thermodynamics of random networks , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[35]  B. Erman,et al.  Theory of elasticity of polymer networks. II. The effect of geometric constraints on junctions , 1978 .

[36]  Kurt Kremer,et al.  Dynamics of polymer solutions and melts. Reptation predictions and scaling of relaxation times , 1991 .

[37]  W. Graessley Statistical Mechanics of Random Coil Networks , 1975 .

[38]  A. J. Staverman Properties of phantom networks and real networks , 1982 .

[39]  F. Boué,et al.  Deformation dependence of the form factor of a crosslinked chain in a rubber: Entanglement and orientational effect , 1986 .

[40]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[41]  D. Pearson,et al.  The Structure of Rubber Networks with Multifunctional Junctions , 1978 .

[42]  J. E. Mark,et al.  Elastomeric polymer networks , 1992 .

[43]  Kurt Kremer,et al.  Statics and dynamics of polymeric melts: a numerical analysis , 1983 .

[44]  J. Prost,et al.  Scattering by deformed swollen gels: butterfly isointensity patterns , 1990 .

[45]  Paul J. Flory,et al.  Theory of elasticity of polymer networks. The effect of local constraints on junctions , 1977 .

[46]  S. Edwards,et al.  The tube model theory of rubber elasticity , 1988 .

[47]  S. Edwards,et al.  Elasticity of entangled networks , 1981 .

[48]  P. G. de Gennes,et al.  Kinetics of diffusion‐controlled processes in dense polymer systems. I. Nonentangled regimes , 1982 .

[49]  L. C. Case Branching in polymers. I. Network defects , 1960 .

[50]  E. Helfand,et al.  Elastically Ineffective Polymer Chains in Rubbers , 1974 .

[51]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[52]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[53]  M. Warner The dynamics of particular points on a polymer chain , 1981 .

[54]  Kurt Kremer,et al.  Structural properties of randomly crosslinked polymer networks , 1992 .

[55]  G. Grest,et al.  Simulations for structural and dynamic properties of dense polymer systems , 1992 .

[56]  B. Friedman,et al.  Theory of intramolecular reactions in polymeric liquids , 1993 .

[57]  C. Macosko,et al.  Equilibrium Modulus of Model Poly(dimethylsiloxane) Networks , 1981 .

[58]  D. S. Pearson,et al.  Elastic Properties of Well-Characterized Ethylene-Propylene Copolymer Networks , 1980 .

[59]  P. Flory,et al.  STATISTICAL MECHANICS OF CROSS-LINKED POLYMER NETWORKS II. SWELLING , 1943 .

[60]  G. Grest,et al.  Kinetics of End Crosslinking in Dense Polymer Melts , 1992 .

[61]  H. James Statistical Properties of Networks of Flexible Chains , 1947 .

[62]  Suman K. Patel,et al.  Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks , 1992 .

[63]  Burkhard Dünweg,et al.  BROWNIAN DYNAMICS SIMULATIONS WITHOUT GAUSSIAN RANDOM NUMBERS , 1991 .

[64]  P. Higgs,et al.  Trapped Entanglements in Rubbers. A Unification of Models , 1989 .

[65]  S. Kästner Theorie der Polymernetzwerke mit behinderter Fluktuation , 1981 .

[66]  L. Leibler,et al.  Large-scale heterogeneities in randomly cross-linked networks , 1988 .

[67]  Kremer,et al.  Relaxation of randomly cross-linked polymer melts. , 1991, Physical review letters.

[68]  F. Wilczek,et al.  Particle–antiparticle annihilation in diffusive motion , 1983 .

[69]  H E Stanley,et al.  Backbone and elastic backbone of percolation clusters obtained by the new method of 'burning' , 1984 .