H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033−4723

Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H0 of a few per cent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI 2033−4723 ($z_{\rm src} =\,$1.662, $z_{\rm lens}=\,$0.6575), one of the core targets of the H0LiCOW project for which we present cosmological inferences in a companion paper. We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens ($\sigma _{\rm {los}}= 250^{+15}_{-21}$  km s−1) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to i < 23 mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalogue, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin ) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify two galaxy groups and three galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al.

[1]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[2]  Marc W. Pound,et al.  Astronomical Data Analysis Software and Systems XXVIII. , 2019 .

[3]  J. Frieman,et al.  COSMOGRAIL XVIII: time delays of the quadruply lensed quasar WFI2033-4723 , 2019, 1905.08260.

[4]  D. Petravick,et al.  easyaccess: Enhanced SQL command line interpreter for astronomical surveys , 2018, J. Open Source Softw..

[5]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[6]  K. Lee,et al.  Survey of gravitationally-lensed objects in HSC imaging (SuGOHI) , 2019, Astronomy & Astrophysics.

[7]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[8]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[9]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[10]  T. Treu,et al.  Improving time-delay cosmography with spatially resolved kinematics , 2017, 1709.01517.

[11]  S. Suyu,et al.  Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI). II. Environments and Line-of-Sight Structure of Strong Gravitational Lens Galaxies to z ∼ 0.8 , 2018 .

[12]  Roland Bacon,et al.  MPDAF - A Python package for the analysis of VLT/MUSE data , 2017, 1710.03554.

[13]  R. Pelló,et al.  MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64 , 2016, 1609.02920.

[14]  P. Marshall,et al.  H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts★ , 2016, 1607.01047.

[15]  G. Meylan,et al.  H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223 , 2016, 1607.00382.

[16]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.

[17]  Curtis McCully,et al.  Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems , 2016, 1601.05417.

[18]  D. Fabricant,et al.  THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7 , 2016, 1607.04275.

[19]  Simon J. Lilly,et al.  ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy , 2016, 1602.08037.

[20]  D. Sluse,et al.  Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar , 2015, 1508.05394.

[21]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XV. Assessing the achievability and precision of time-delay measurements , 2015, 1506.07524.

[22]  S. Derriere,et al.  T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry , 2015, 1505.02516.

[23]  A. Amara,et al.  GRAVITATIONAL LENS MODELING WITH BASIS SETS , 2015, 1504.07629.

[24]  A. Leauthaud,et al.  Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring , 2015, 1503.05200.

[25]  Michelle L. Wilson,et al.  A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG , 2015, 1503.02074.

[26]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[27]  Ole Streicher,et al.  The MUSE Data Reduction Pipeline: Status after Preliminary Acceptance Europe , 2014, 1507.00034.

[28]  Mark Taylor Visualising Large Datasets in TOPCAT v4 , 2014, ArXiv.

[29]  D. Sluse,et al.  Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223 , 2014, 1405.5014.

[30]  C. McCully,et al.  A new hybrid framework to efficiently model lines of sight to gravitational lenses , 2013, 1401.0197.

[31]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[32]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[33]  S. More,et al.  THE STATISTICAL NATURE OF THE BRIGHTEST GROUP GALAXIES , 2013, 1307.5107.

[34]  P. Marshall,et al.  Reconstructing the lensing mass in the Universe from photometric catalogue data , 2013, 1303.6564.

[35]  France.,et al.  Dynamical analysis of strong-lensing galaxy groups at intermediate redshift , 2012, 1212.2624.

[36]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[37]  Roland Bacon,et al.  Design and capabilities of the MUSE data reduction software and pipeline , 2012, Other Conferences.

[38]  G. Meylan,et al.  Microlensing of the broad line region in 17 lensed quasars , 2012, 1206.0731.

[39]  D. Thompson,et al.  DISENTANGLING BARYONS AND DARK MATTER IN THE SPIRAL GRAVITATIONAL LENS B1933+503 , 2011, 1110.2536.

[40]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[41]  A. Bolton,et al.  EVIDENCE FOR DARK MATTER CONTRACTION AND A SALPETER INITIAL MASS FUNCTION IN A MASSIVE EARLY-TYPE GALAXY , 2011, 1111.4215.

[42]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1) , 2011, 1106.1994.

[43]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[44]  S. Suyu,et al.  The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121 , 2010, 1007.4815.

[45]  N. Radziwill,et al.  Software and Cyberinfrastructure for Astronomy , 2010 .

[46]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[47]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[48]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[49]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[50]  C. Fassnacht,et al.  Galaxy Number Counts and Implications for Strong Lensing , 2009, 0909.4301.

[51]  Masanori Iye,et al.  National Astronomical Observatory of Japan , 2009, 0908.0369.

[52]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[53]  Mark Casali,et al.  HAWK-I: the high-acuity wide-field K-band imager for the ESO Very Large Telescope , 2008 .

[54]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[55]  Pierre Magain,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VII. Time delays and the Hubble con , 2008, 0803.4015.

[56]  P. Hall,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies , 2006, astro-ph/0612612.

[57]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[58]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy , 2005, astro-ph/0511026.

[59]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[60]  F. Castander,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South , 2005, astro-ph/0509202.

[61]  R. Carlberg,et al.  Galaxy groups at 0.3 <=z<= 0.55 - I. Group properties , 2005 .

[62]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[63]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[64]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[65]  H. Rix,et al.  WFI J2026−4536 and WFI J2033−4723: Two New Quadruple Gravitational Lenses , 2003, astro-ph/0312478.

[66]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[67]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[68]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[69]  P. P. van der Werf,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[70]  T. Treu,et al.  The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant , 2002, astro-ph/0210002.

[71]  T. Treu,et al.  The Internal Structure and Formation of Early-Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004 , 2002, astro-ph/0202342.

[72]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[73]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[74]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[75]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[76]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[77]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[78]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .