Accessory phase perspectives for ore-forming processes and magmatic sulphide exploration in the Labrador Trough, northern Québec, Canada

The compositions of resistant indicator minerals are diagnostic of their original host environment. They may be used to fingerprint different types of mineral deposit as well as vector towards them. We have characterised the composition of apatite and Fe-Ti oxides in variably-mineralised mafic-ultramafic rock units of the Montagnais Sill Complex in the Labrador Trough to assess their suitability for vectoring magmatic sulphide occurrences. Two broad types of apatite were identified: (i) fluoro- to hydroxy-apatite (Cl/[Cl+F] < 0.2); and (ii) chloro- to hydroxy apatite (Cl/[Cl+F] > 0.5). The former reflects variable degrees of degassing and Cl-loss during Rayleigh fractionation and is not indicative of Ni-Cu-mineralisation or host rock. The latter exists only in sulphidic olivine cumulate units and thus, may be used to vector similar rock types in the Labrador Trough. Ilmenite is the dominant oxide, except for the upper parts of differentiated gabbroic sills in which titanomagnetite is dominant. Magnetite occurs only as a secondary phase in serpentinised olivine cumulates and is not discriminative for magmatic sulphides. Ilmenite and titanomagnetite in the sulphidic olivine-bearing units have characteristically high Mg (~ 1,000-10,000 ppm), Cr (~ 100-1,000 ppm), Ni (~ 10-1,000 ppm), and Cu (~ 1-10,000 ppm) concentrations relative to those from other rock units. Their composition is consistent with Fe-Ti oxides derived from evolved sulphide melts in ultramafic-hosted Ni-Cu-(PGE) sulphide deposits and thus may be used to vector towards similar magmatic sulphide occurrences in the Labrador Trough.

[1]  W. Maier,et al.  In Situ Multiple Sulfur Isotope and S/Se Composition of Magmatic Sulfide Occurrences in the Labrador Trough, Northern Quebec , 2021 .

[2]  Mei-Fu Zhou,et al.  Contrasting Geochemistry of Apatite from Peridotites and Sulfide Ores of the Jinchuan Ni-Cu Sulfide Deposit, NW China , 2021 .

[3]  N. Coint,et al.  Evidence for Silicate–Liquid Immiscibility in Monzonites and Petrogenesis of Associated Fe–Ti–P-rich rocks: Example from the Raftsund Intrusion, Lofoten, Northern Norway , 2020 .

[4]  B. Cousens,et al.  Roberts Lake Syncline mafic lavas (NE Superior craton): A proposed extension of the Cape Smith belt , 2020 .

[5]  W. Maier,et al.  Contact-style magmatic sulphide mineralisation in the Labrador Trough, northern Quebec, Canada: implications for regional prospectivity , 2020, Canadian Journal of Earth Sciences.

[6]  G. O’Sullivan,et al.  The trace element composition of apatite and its application to detrital provenance studies , 2020 .

[7]  A. Boudreau Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions , 2019 .

[8]  L. Mathieu Origin of the Vanadiferous Serpentine–Magnetite Rocks of the Mt. Sorcerer Area, Lac Doré Layered Intrusion, Chibougamau, Québec , 2019, Geosciences.

[9]  R. Stevenson,et al.  Petrography, geochemistry, and Nd isotope systematics of metaconglomerates and matrix-rich metasedimentary rocks: implications for the provenance and tectonic setting of the Labrador Trough, Canada , 2019, Canadian Journal of Earth Sciences.

[10]  A. Renner Limits , 2018, Fueling Culture.

[11]  A. Mogessie,et al.  Deciphering Magmatic and Metasomatic Processes Recorded by Fluid Inclusions and Apatite within the Cu–Ni±PGE-Sulfide Mineralized Bathtub Intrusion of the Duluth Complex, NE Minnesota, USA , 2018, Journal of Petrology.

[12]  T. Lacourse,et al.  Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in Till near the Mount Polley Cu-Au Deposit, British Columbia, Canada , 2017 .

[13]  K. Das,et al.  The occurrence of fluor-wagnerite in UHT granulites and its implications towards understanding fluid regimes in the evolution of deep crust: a case study from the Eastern Ghats Belt, India , 2017, Mineralogy and Petrology.

[14]  F. Tornos,et al.  Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile , 2017, Mineralium Deposita.

[15]  E. Grunsky,et al.  Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration , 2016 .

[16]  L. A. Coogan,et al.  Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration , 2016 .

[17]  Xiaoliang Liang,et al.  Magnetite-rutile symplectite derived from ilmenite-hematite solid solution in the Xinjie Fe-Ti oxide-bearing, mafic-ultramafic layered intrusion (SW China) , 2015 .

[18]  John M. Hughes,et al.  Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals , 2015 .

[19]  G. Beaudoin,et al.  The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration , 2015 .

[20]  A. Boudreau,et al.  The Lac Des Iles Palladium Deposit, Ontario, Canada. Part II. Halogen variations in apatite , 2015, Mineralium Deposita.

[21]  G. Beaudoin,et al.  Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration , 2014 .

[22]  D. Lentz,et al.  Dissolution–reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite , 2014 .

[23]  Feng Liu,et al.  The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt: A Kiruna-type iron deposit , 2014 .

[24]  C. Szabó,et al.  Segregation of magmatic fluids and their potential in the mobilization of platinum-group elements in the South Kawishiwi Intrusion, Duluth Complex, Minnesota - Evidence from petrography, apatite geochemistry and coexisting fluid and melt inclusions , 2013 .

[25]  M. Holness,et al.  Dual origin of Fe–Ti–P gabbros by immiscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion , 2012 .

[26]  G. Beaudoin,et al.  Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination , 2012 .

[27]  D. Harlov,et al.  Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens , 2012 .

[28]  C. Neal,et al.  Chemical Characterisation of Natural Ilmenite: A Possible New Reference Material , 2012 .

[29]  M. McClenaghan Overview of common processing methods for recovery of indicator minerals from sediment and bedrock in mineral exploration , 2011 .

[30]  J. Toraño,et al.  A review of indicator minerals and sample processing methods for geochemical exploration , 2011 .

[31]  G. Beaudoin,et al.  Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types , 2011 .

[32]  T. White,et al.  Nomenclature of the apatite supergroup minerals , 2010 .

[33]  E. Belousova,et al.  Manganoan ilmenite as kimberlite/diamond indicator mineral , 2009 .

[34]  J. Malpas,et al.  Origin of Fe–Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China , 2007 .

[35]  P. E. Brown,et al.  The Sonju Lake layered intrusion, northeast Minnesota: Internal structure and emplacement history inferred from magnetic fabrics , 2007 .

[36]  A. Hofmann,et al.  GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards , 2005 .

[37]  J. Webster,et al.  Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid , 2005 .

[38]  P. Ngoepe,et al.  Structure and properties of ilmenite from first principles , 2005 .

[39]  A. Boudreau,et al.  HALOGEN VARIATIONS IN THE PALEOPROTEROZOIC LAYERED MAFIC-ULTRAMAFIC INTRUSIONS OF EAST KIMBERLEY, WESTERN AUSTRALIA: IMPLICATIONS FOR PLATINUM GROUP ELEMENT MINERALIZATION , 2004 .

[40]  W. Meurer,et al.  THE RELATIONSHIP BETWEEN CHLORAPATITE AND PGE-RICH CUMULATES IN LAYERED INTRUSIONS: THE KLÄPPSJÖ GABBRO, NORTH-CENTRAL SWEDEN, AS A CASE STUDY , 2004 .

[41]  H. Prichard,et al.  Petrology and Crystallization History of Multiphase Sulfide Droplets in a Mafic Dike from Uruguay: Implications for the Origin of Cu-Ni-PGE Sulfide Deposits , 2004 .

[42]  W. Griffin,et al.  Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type , 2002 .

[43]  F. J. Kruger,et al.  The Halogen Geochemistry of the Bushveld Complex, Republic of South Africa: Implications for Chalcophile Element Distribution in the Lower and Critical Zones , 2000 .

[44]  Andrew C. Morton,et al.  Processes controlling the composition of heavy mineral assemblages in sandstones , 1999 .

[45]  N. Machado,et al.  U–Pb ages for magmatism and deformation in the New Quebec Orogen , 1997 .

[46]  A. Boudreau,et al.  Halogen geochemistry of the Great Dyke, Zimbabwe , 1995 .

[47]  J. Brenan Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite , 1993 .

[48]  A. Boudreau,et al.  Infiltration metasomatism in layered intrusions — An example from the Stillwater Complex, Montana , 1992 .

[49]  R. Darling,et al.  Tectonized Cu-Ni deposits of the Aulneau-Redcliff area, central Labrador Trough, Quebec , 1991 .

[50]  A. B. Ford,et al.  APATITE OF THE DUFEK INTRUSION: DISTRIBUTION, PARAGENESIS, AND CHEMISTRY , 1990 .

[51]  A. McBirney,et al.  Metasomatic replacement in the Skærgaard Intrusion, East Greenland: Preliminary observations☆ , 1990 .

[52]  A. Boudreau,et al.  Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition , 1989 .

[53]  H. Naslund Petrology of the Basistoppen Sill, East Greenland: A Calculated Magma Differentiation Trend , 1989 .

[54]  A. McBirney,et al.  Mixing and unmixing of magmas , 1980 .

[55]  A. Jaques An archean tholeiitic layered sill from Mt Kilkenny, Western Australia , 1976 .

[56]  A. J. Naldrett A Portion of the System Fe–S–O between 900 and 1080 °C and its Application to Sulfide Ore Magmas , 1969 .

[57]  L. Cruz,et al.  Using the Geochemistry of Magnetite and Apatite to Gain Insights Into the Genesis of Kiruna-type Ore Deposits and for Exploration in Densely Covered Terrains , 2019 .

[58]  B. Konecke Sulfur in Apatite as a Volatile and Redox Tracer in Magmatic and Magmatic-Hydrothermal Systems , 2019 .

[59]  R. Sievwright Developing magnetite chemistry as an exploration tool for porphyry copper deposits , 2017 .

[60]  J. Darling,et al.  Apatite trace element and isotope applications to petrogenesis and provenance , 2017 .

[61]  D. Lentz,et al.  REEQUILIBRATION PROCESSES IN MAGNETITE FROM IRON SKARN DEPOSITS , 2015 .

[62]  I. Veksler,et al.  Silicate Liquid Immiscibility in Layered Intrusions , 2015 .

[63]  E. Hanski,et al.  The Mustavaara Fe-Ti-V Oxide Deposit , 2015 .

[64]  D. Pyle,et al.  New Constraints On Electron-Beam Induced Halogen Migration In Apatite , 2015 .

[65]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[66]  Xiaoliang Liang,et al.  The valence and site occupancy of substituting metals in magnetite spinel structure Fe3−xMxO4 (M = Cr, Mn, Co and Ni) and their influence on thermal stability: An XANES and TG-DSC investigation , 2013 .

[67]  S. Grasby,et al.  HYDROTHERMAL SYSTEMS , 2012 .

[68]  Ulf Hålenius,et al.  Crystal chemistry of the magnetite-ulvöspinel series , 2009 .

[69]  JonN C. SronnnnR,et al.  Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis , 2007 .

[70]  S. Averill The application of heavy indicator mineralogy in mineral exploration with emphasis on base metal indicators in glaciated metamorphic and plutonic terrains , 2001, Geological Society, London, Special Publications.

[71]  M. V. Van Kranendonk,et al.  The Palaeoproterozoic Southeastern Churchill Province of Labrador-Quebec, Canada: orogenic development as a consequence of oblique collision and indentation , 1996, Geological Society, London, Special Publications.

[72]  R. Snethlage,et al.  The Formation of Chromite and Titanomagnetite Deposits Within the Bushveld Igneous Complex , 1982 .

[73]  W. Baragar,et al.  Chapter 12 The Circum-Superior Belt: A Proterozoic Plate Margin? , 1981 .

[74]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[75]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .

[76]  L. R. Wager The Major Element Variation of the Layered Series of the Skaergaard Intrusion and a Re-estimation of the Average Composition of the Hidden Layered Series and of the Successive Residual Magmas , 1960 .