Photorefractive properties of strontium‐barium niobate

We have grown and optically characterized strontium‐barium niobate crystals, including both undoped and cerium‐doped crystals having two different Sr/Ba ratios (61/39 and 75/25). By measuring the coupling of two optical beams in the crystals, we have determined the following photorefractive properties: the effective density, sign, and spectral response of the dominant charge carrier, the grating formation rate, dark conductivity, and carrier diffusion length. We find that electrons are the dominant photorefractive charge carriers in all of our samples; the typical density of photorefractive charges is ∼1×1016 cm−3 in the undoped samples. The grating formation rate increases with intensity, with a slope of ∼0.3 cm2/(W s) over an intensity range of ∼1–15 W/cm2 in undoped samples. Cerium doping improves both the charge density (increased by a factor of ∼3) and the response rate per unit intensity (∼5 times faster).

[1]  A. Yariv,et al.  Associative memories based on message-bearing optical modes in phase-conjugate resonators. , 1986, Optics letters.

[2]  J. White,et al.  Laser with dynamic holographic intracavity distortion correction capability , 1982 .

[3]  J. P. Huignard,et al.  Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals , 1981 .

[4]  R. Hellwarth,et al.  Hole - electron competition in photorefractive gratings. , 1986, Optics letters.

[5]  J. Diels,et al.  Influence of wave-front-conjugated coupling on the operation of a laser gyro. , 1981, Optics letters.

[6]  J. Feinberg Real-time edge enhancement using the photorefractive effect. , 1980, Optics letters.

[7]  Marvin B. Klein,et al.  Beam coupling in BaTiO3 at 442 nm , 1985 .

[8]  I. Ledoux,et al.  Two-wave mixing and energy transfer in BaTiO3 application to laser beamsteering , 1984 .

[9]  Stephen Ducharme,et al.  Speed of the photorefractive effect in a BaTiO3 single crystal , 1984 .

[10]  Theo T. Tschudi,et al.  Coherent CW image amplifier and oscillator using two-wave interaction in a BaTiO3-crystal , 1983 .

[11]  Hirotsugu Kozuka,et al.  High‐sensitive holographic storage in Ce‐doped SBN , 1977 .

[12]  Peter Günter,et al.  Holography, coherent light amplification and optical phase conjugation with photorefractive materials , 1982 .

[13]  George C. Valley,et al.  Simultaneous electron/hole transport in photorefractive materials , 1986 .

[14]  William W. Clark,et al.  Strontium barium niobate as a self-pumped phase conjugator , 1986 .

[15]  P Yeh,et al.  Time reversal by an interferometer with coupled phase-conjugate reflectors. , 1985, Optics letters.

[16]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[17]  M. Klein,et al.  Beam coupling in undoped GaAs at 1.06 microm using the photorefractive effect. , 1984, Optics letters.

[18]  P Yeh,et al.  Frequency shift and cavity length in photorefractive resonators. , 1985, Optics letters.

[19]  Ratnakar R. Neurgaonkar,et al.  Progress in photorefractive tungsten bronze crystals , 1986 .

[20]  P. Yeh,et al.  Phase-conjugate fiber-optic gyro. , 1986, Applied optics.

[21]  S H Lee,et al.  Optical digital logic operations by two-beam coupling in photorefractive material. , 1986, Applied optics.

[22]  J. Feinberg,et al.  Self-pumped, continuous-wave phase conjugator using internal reflection. , 1982, Optics letters.

[23]  Stephen Ducharme,et al.  Altering the photorefractive properties of BaTiO 3 by reduction and oxidation at 650°C , 1986 .

[24]  Yasutoshi Kashiwada,et al.  The congruent melting composition of strontium barium niobate , 1976 .

[25]  Y. Fainman,et al.  Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3 , 1986 .

[26]  R. A. Mullen,et al.  Optical measurement of the photorefractive parameters of Bi12SiO20 , 1985 .

[27]  Valerii V. Voronov,et al.  Photoinduced light scattering in cerium-doped barium strontium niobate crystals , 1980 .

[28]  Amnon Yariv,et al.  Coherent oscillation by self‐induced gratings in the photorefractive crystal BaTiO3 , 1982 .

[29]  Amnon Yariv,et al.  Real‐time image processing via four‐wave mixing in a photorefractive medium , 1980 .

[30]  Laszlo Solymar,et al.  Transient energy transfer in photorefractive materials; An analytic solution , 1984 .

[31]  P. Yeh,et al.  Parallel image subtraction using a phase-conjugate Michelson interferometer. , 1986, Optics letters.

[32]  P. Yeh,et al.  Phase shifts of photorefractive gratings and phase-conjugate waves. , 1987, Optics letters.

[33]  J B Thaxter,et al.  Unique Properties of SBN and Their Use in a Layered Optical Memory. , 1974, Applied optics.

[34]  Jack Feinberg,et al.  Photorefractive effects and light‐induced charge migration in barium titanate , 1980 .

[35]  Laser oscillator using resonator with self-pumped phase-conjugate mirror. , 1983, Optics letters.

[36]  Amnon Yariv,et al.  Real time image subtraction and ‘‘exclusive or’’ operation using a self‐pumped phase conjugate mirror , 1986 .

[37]  Optical generator of spheroidal wave functions, using a BSO crystal , 1985 .

[38]  D. Z. Anderson,et al.  Coherent optical eigenstate memory. , 1986, Optics letters.

[39]  Pochi Yeh,et al.  Theory of unidirectional photorefractive ring oscillators , 1985 .

[40]  J W Goodman,et al.  Real-time enhancement of defects in a periodic mask using photorefractive Bi(12)SiO(20). , 1985, Optics letters.

[41]  J. White,et al.  Amplifying continuous wave phase conjugate mirror with strontium barium niobate , 1982 .

[42]  A. Yariv,et al.  Photorefractive Properties Of Undoped, Cerium-Doped, And Iron-Doped Single-Crystal SrO.6BaO.4Nb2O6 , 1986 .

[43]  A. Prokhorov,et al.  Barium‐strontium mobate crystals for optical information recording , 1981 .

[44]  Marvin B. Klein,et al.  Photorefractive effect in BaTiO 3 : microscopic origins , 1986 .

[45]  P. Yeh,et al.  Possibility of relative position sensing by using double phase-conjugate resonators , 1986 .