Advancing Fourier: space-time concepts in ultrafast optics, imaging, and photonic neural networks.

The concepts of Fourier optics were established in France in the 1940s by Pierre-Michel Duffieux, and laid the foundations of an extensive series of activities in the French research community that have touched on nearly every aspect of contemporary optics and photonics. In this paper, we review a selection of results where applications of the Fourier transform and transfer functions in optics have been applied to yield significant advances in unexpected areas of optics, including the spatial shaping of complex laser beams in amplitude and in phase, real-time ultrafast measurements, novel ghost imaging techniques, and the development of parallel processing methodologies for photonic artificial intelligence.

[1]  Jean-Marc Merolla,et al.  Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser , 2018, Nature Photonics.

[2]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[3]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[4]  Laurent Larger,et al.  High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification , 2017 .

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  E. Lantz,et al.  Parametric Amplification of Images: From Time Gating to Noiseless Amplification , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Peeter Saari,et al.  Evidence of X-Shaped Propagation-Invariant Localized Light Waves , 1997 .

[8]  L. Larger,et al.  Real-time full bandwidth measurement of spectral noise in supercontinuum generation , 2012, Scientific reports.

[9]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[10]  Michael Vasilyev,et al.  Noiseless Optical Amplification of Images , 1999 .

[11]  Pierre Suret,et al.  Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography , 2018 .

[12]  B H Kolner,et al.  Temporal imaging with a time lens. , 1990, Optics letters.

[13]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[14]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[15]  Razvan Stoian,et al.  Ultrafast Bessel beams: advanced tools for laser materials processing , 2018, 1809.07152.

[16]  Kebin Shi,et al.  Super-resolution deep imaging with hollow Bessel beam STED microscopy , 2015 .

[17]  Ingo Fischer,et al.  Reconfigurable semiconductor laser networks based on diffractive coupling. , 2015, Optics letters.

[18]  Pierre Suret,et al.  Single-shot observation of optical rogue waves in integrable turbulence using time microscopy , 2016, Nature communications.

[19]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[20]  B. Colombeau,et al.  Shaping of short laser pulses by passive optical Fourier techniques , 1976 .

[21]  K. Goda,et al.  Dispersive Fourier transformation for fast continuous single-shot measurements , 2013, Nature Photonics.

[22]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[23]  Yajun Li,et al.  Conditions for the validity of the Debye integral representation of focused fields , 1981 .

[24]  M. C. Soriano,et al.  Advances in photonic reservoir computing , 2017 .

[25]  W. Marsden I and J , 2012 .

[26]  Chirped optical X-shaped pulses in material media. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Daniel Brunner,et al.  Diffractive Coupling For Photonic Networks: How Big Can We Go? , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  F. Devaux,et al.  Einstein-Podolsky-Rosen paradox in single pairs of images. , 2015, Optics express.

[29]  Eric Lantz,et al.  Spatially noiseless optical amplification of images. , 2005, Physical review letters.

[30]  Laurent Larger,et al.  Photonic nonlinear transient computing with multiple-delay wavelength dynamics. , 2012, Physical review letters.

[31]  C. Sheppard,et al.  Validity of the Debye approximation. , 2000, Optics letters.

[32]  Jean-Charles Viénot,et al.  Optical computing and investigations on writing. , 1976, Applied optics.

[33]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[34]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[35]  R. Stoian,et al.  [INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams: Invited paper for the section : Hot topics in Ultrafast Lasers , 2016 .

[36]  A. W. Lohmann Principles of Optical Computing , 1990 .

[37]  Roberto Morandotti,et al.  Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability , 2016, Nature Communications.

[38]  L Froehly,et al.  Spatiotemporal structure of femtosecond Bessel beams from spatial light modulators. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  W Sibbett,et al.  White light propagation invariant beams. , 2005, Optics express.

[40]  Bahram Jalali,et al.  Fluctuations and correlations in modulation instability , 2012, Nature Photonics.

[41]  Jonathan Leach,et al.  Generation of achromatic Bessel beams using a compensated spatial light modulator. , 2006, Optics express.

[42]  K Wagner,et al.  Multilayer optical learning networks. , 1987, Applied optics.

[43]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[44]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  Eric Lantz,et al.  Temporal ghost imaging with pseudo-thermal speckle light , 2017 .

[46]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[47]  J. Mcleod The Axicon: A New Type of Optical Element , 1954 .

[48]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[49]  F. Courvoisier,et al.  Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass , 2019, Applied Physics Letters.

[50]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[51]  Gevorg Grigoryan,et al.  Using Color to Understand Light Transmission , 2000 .

[52]  A. Rohrbach,et al.  Microscopy with self-reconstructing beams , 2010 .

[53]  R. Leitgeb,et al.  Extended focus high-speed swept source OCT with self-reconstructive illumination. , 2011, Optics express.

[54]  Alain Lacourt,et al.  Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications , 1973 .

[55]  C. Froehly Optical processing of picosecond laser pulses , 1981 .

[56]  M. Bock,et al.  Ultrashort highly localized wavepackets. , 2012, Optics express.

[57]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[58]  Laurent Larger,et al.  Reinforcement Learning in a large scale photonic Recurrent Neural Network , 2017, Optica.

[59]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[60]  Ari T. Friberg,et al.  Ghost imaging in the time domain , 2016, Nature Photonics.

[61]  Fabrice Devaux,et al.  Computational temporal ghost imaging , 2016, 1603.04647.

[62]  Theo Lasser,et al.  Fast focus field calculations , 2008, SPIE BiOS.

[63]  Eric Lantz,et al.  Transfer function of spatial frequencies in parametric image amplification : experimental analysis and application to picosecond spatial filtering , 1995 .

[64]  Olivier Pinel,et al.  Generation of high conical angle Bessel-Gauss beams with reflective axicons. , 2018, Applied optics.

[65]  W. Sibbett,et al.  Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam , 2002, Nature.

[66]  Laurent Larger,et al.  Nonlinear dynamics: Optoelectronic chaos , 2010, Nature.

[67]  Eric Lantz,et al.  Temporal ghost imaging with twin photons , 2016 .

[68]  Reza Salem,et al.  Application of space–time duality to ultrahigh-speed optical signal processing , 2013 .

[69]  J. Duvernoy,et al.  Bistabilité, multistabilité et chaos en longueur d’onde , 1987 .