Positive, conservative, equilibrium state preserving and implicit difference schemes for the isotropic Fokker-Planck-Landau equation
暂无分享,去创建一个
[1] Stéphane Dellacherie. Sur un schéma numérique semi-discret appliqué à un opérateur de Fokker—Planck isotrope , 1999 .
[2] Edward W. Larsen,et al. Discretization methods for one-dimensional Fokker-Planck operators , 1985 .
[3] Pierre Degond,et al. THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .
[4] A. R. Bell,et al. An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .
[5] Christophe Buet,et al. About positive, energy conservative and equilibrium state preserving schemes for the isotropic Fokker-Planck-Landau equation , 2006 .
[6] Cédric Villani,et al. On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .
[7] V. A. Chuyanov,et al. On the numerical solution of Landau's kinetic equation , 1976 .
[8] Luc Mieussens,et al. Implicit Schemes for the Fokker-Planck-Landau Equation , 2005, SIAM J. Sci. Comput..
[9] Pierre Degond,et al. An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .
[10] Y. Berezin,et al. Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .
[11] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[12] I. F. Potapenko,et al. The completely conservative difference schemes for the nonlinear Landau—Fokker—Planck equation , 1999 .
[13] Lorenzo Pareschi,et al. A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .
[14] V. Chuyanov,et al. A completely conservative difference scheme for the two-dimensional Landau equation , 1980 .
[15] A. B. Langdon,et al. Conservative differencing of the electron Fokker-Planck transport equation , 1981 .
[16] Laurent Desvillettes,et al. On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .
[17] Stéphane Cordier,et al. Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .