Parameter estimation in continuous-time dynamic models using principal differential analysis

Principal differential analysis (PDA) is an alternative parameter estimation technique for differential equation models in which basis functions (e.g., B-splines) are fitted to dynamic data. Derivatives of the resulting empirical expressions are used to avoid solving differential equations when estimating parameters. Benefits and shortcomings of PDA were examined using a simple continuous stirred-tank reactor (CSTR) model. Although PDA required considerably less computational effort than traditional nonlinear regression, parameter estimates from PDA were less precise. Sparse and noisy data resulted in poor spline fits and misleading derivative information, leading to poor parameter estimates. These problems are addressed by a new iterative algorithm (iPDA) in which the spline fits are improved using model-based penalties. Parameter estimates from iPDA were unbiased and more precise than those from standard PDA. Issues that need to be resolved before iPDA can be used for more complex models are discussed.

[1]  J Swartz,et al.  Discussion of parameter estimation in biological modelling: Algorithms for estimation and evaluation of the estimates , 1975, Journal of mathematical biology.

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Jayant G. Deshpande,et al.  Parameter estimation using splines , 1974, Inf. Sci..

[4]  Hubert Schwetlick,et al.  Least squares approximation by splines with free knots , 1995 .

[5]  James O. Ramsay,et al.  Applied Functional Data Analysis: Methods and Case Studies , 2002 .

[6]  James O. Ramsay,et al.  Penalized regression with model‐based penalties , 2000 .

[7]  Hubert Schwetlick,et al.  Constrained approximation by splines with free knots , 1997 .

[8]  Bernard W. Silverman,et al.  Functional Data Analysis , 1997 .

[9]  Babatunde A. Ogunnaike,et al.  Process Dynamics, Modeling, and Control , 1994 .

[10]  Mark A. Kramer,et al.  Algorithm 658: ODESSA–an ordinary differential equation solver with explicit simultaneous sensitivity analysis , 1988, TOMS.

[11]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[12]  Donald G. Watts,et al.  Estimating parameters in nonlinear rate equations , 1994 .

[13]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[14]  Jayant G. Deshpande,et al.  Parameter estimation using splines , 1974, Inf. Sci..

[15]  Jorge C Lucero,et al.  Identifying a differential equation for lip motion. , 2002, Medical engineering & physics.

[16]  M. Benson,et al.  Parameter fitting in dynamic models , 1979 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Y. P. Tang On the Estimation of Rate Constants for Complex Kinetic Models , 1971 .

[19]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[20]  V. Gracco,et al.  Functional data analyses of lip motion. , 1996, The Journal of the Acoustical Society of America.

[21]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[22]  Lorenz T. Biegler,et al.  Nonlinear parameter estimation: A case study comparison , 1986 .

[23]  Elisabetta Arato,et al.  A more general formulation of separable least squares , 1987 .

[24]  Rein Luus,et al.  Improvement of Gauss-Newton method for parameter estimation through the use of information index , 1983 .

[25]  Ferenc Szeifert,et al.  Incorporating prior knowledge in a cubic spline approximation: Application to the identification of reaction kinetic models , 2003 .

[26]  K Thomaseth,et al.  Integrated mathematical model to assess beta-cell activity during the oral glucose test. , 1996, The American journal of physiology.

[27]  N. El‐Farra,et al.  Bounded robust control of constrained multivariable nonlinear processes , 2003 .

[28]  Tommy Elfving,et al.  An algorithm for computing constrained smoothing spline functions , 1987 .

[29]  Warren E. Stewart,et al.  Parameter estimation from multiresponse data , 1992 .

[30]  N. Mansouri,et al.  Estimation of parameters in nonlinear problems , 2004, Numerical Algorithms.

[31]  E. Kim,et al.  A mixed galerkin method for computing the flow between eccentric rotating cylinders , 1998 .

[32]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[33]  James O. Ramsay,et al.  Functional Components of Variation in Handwriting , 2000 .

[34]  Thomas E. Marlin,et al.  Process Control: Designing Processes and Control Systems for Dynamic Performance , 1995 .

[35]  Douglas M. Bates,et al.  Multiresponse Estimation With Special Application to Linear Systems of Differential Equations , 1985 .

[36]  Paul H. Muir,et al.  A high-order global spatially adaptive collocation method for 1-D parabolic PDEs , 2004 .

[37]  James O. Ramsay,et al.  Functional data analysis of the dynamics of the monthly index of nondurable goods production , 2002 .

[38]  James O. Ramsay,et al.  Principal differential analysis : Data reduction by differential operators , 1996 .

[39]  R. Moser,et al.  Two-Dimensional Mesh Embedding for B-spline Methods , 1998 .

[40]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[41]  A. Refik Bahadir Application of cubic B-spline finite element technique to the thermistor problem , 2004, Appl. Math. Comput..