On some properties of positive definite toeplitz matrices and their possible applications

Abstract Various properties of a real symmetric Toeplitz matrix Σm with elements σjk= a|j−k|, 1 ⩽j,k⩽m, are reviewed here. Matrices of this kind often arise in applications in statistics, econometrics, psychometrics, structural engineering, multichannel filtering, reflection seismology, etc., and it is desirable to have techniques which exploit their special structure. Possible applications of the results related to their inverse, determinant, and eigenvalue problem are suggested.

[1]  Solution of systems with Toeplitz matrices generated by rational functions , 1986 .

[2]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[3]  James H. Justice,et al.  An Algorithm for Inverting Positive Definite Toeplitz Matrices , 1972 .

[4]  William F. Trench,et al.  Weighting Coefficients for the Prediction of Stationary Time Series from the Finite Past , 1967 .

[5]  Shalhav Zohar,et al.  Toeplitz Matrix Inversion: The Algorithm of W. F. Trench , 1969, JACM.

[6]  Paolo Zellini,et al.  On the optimal computation of a set of symmetric and persymmetric bilinear forms , 1979 .

[7]  E. Haynsworth Determination of the inertia of a partitioned Hermitian matrix , 1968 .

[8]  Nancy M. Huang,et al.  Inversion of Persymmetric Matrices Having Toeplitz Inverses , 1972, JACM.

[9]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[10]  N. Pullman Matrix theory and its applications , 1976 .

[11]  Willian F. Trench On the eigenvalue problem for Toeplitz matrices generated by rational functions , 1985 .

[12]  M. Fiedler Quasidirect Decompositions of Hankel and Toeplitz Matrices , 1984 .

[13]  F. Grünbaum Toeplitz matrices commuting with tridiagonal matrices , 1981 .

[14]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[15]  Peter Whittle,et al.  Hypothesis Testing in Time Series Analysis. , 1951 .

[16]  E. Parzen An Approach to Time Series Analysis , 1961 .

[17]  K. G. Jöreskog,et al.  A GENERAL METHOD FOR ANALYSIS OF COVARIANCE STRUCTURES WITH APPLICATIONS: PART I: GENERAL METHODOLOGY* , 1969 .

[18]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[19]  T. Kailath,et al.  Matrices with block Toeplitz inverses , 1986 .

[20]  B. Dickinson Solution of linear equations with rational Toeplitz matrices , 1980 .

[21]  A. Brauer Limits for the characteristic roots of a matrix. III , 1946 .

[22]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[23]  An inverse problem for Toeplitz matrices , 1984 .

[24]  K. Michael Day,et al.  Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function , 1975 .

[25]  A. Hoffman On the nonsingularity of real matrices , 1965 .

[26]  H. Akaike Block Toeplitz Matrix Inversion , 1973 .

[27]  T.N.E. Greville Toeplitz matrices with Toeplitz inverses revisited , 1983 .

[28]  U. Grenander,et al.  Statistical analysis of stationary time series , 1957 .

[29]  J. Wise,et al.  THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY FUNCTION , 1955 .

[30]  Thomas Kailath,et al.  Efficient solution of linear systems of equations with recursive structure , 1986 .

[31]  T. W. Anderson Maximum Likelihood Estimation of Parameters of Autoregressive Processes with Moving Average Residuals and Other Covariance Matrices with Linear Structure , 1975 .

[32]  M. Morf,et al.  A unified derivation for fast estimation algorithms by the conjugate direction method , 1985 .

[33]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[34]  B. Mukherjee LIKELIHOOD RATIO TESTS OF STATISTICAL HYPOTHESES ASSOCIATED WITH PATTERNED COVARIANCE MATRICES IN PSYCHOLOGY , 1970 .

[35]  S. T. Jensen,et al.  Covariance Hypotheses Which are Linear in Both the Covariance and the Inverse Covariance , 1988 .

[36]  H. Daniels The approximate distribution of serial correlation coefficients , 1956 .

[37]  Justus Seely,et al.  Quadratic Subspaces and Completeness , 1971 .

[38]  S. Barnett,et al.  Generating polynomials for matrices with Toeplitz or conjugate-Toeplitz inverses , 1984 .

[39]  Diane Valérie Ouellette Schur complements and statistics , 1981 .

[40]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[41]  Shalhav Zohar,et al.  The Solution of a Toeplitz Set of Linear Equations , 1974, JACM.

[42]  F. Grünbaum Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .

[43]  M. M. Siddiqui On the Inversion of the Sample Covariance Matrix in a Stationary Autoregressive Process , 1958 .

[44]  Raúl Pedro Mentz,et al.  On the Inverse of Some Covariance Matrices of Toeplitz Type , 1976 .

[45]  Kenneth P. Bube,et al.  The One-Dimensional Inverse Problem of Reflection Seismology , 1983 .

[46]  K. Jöreskog A general method for analysis of covariance structures , 1970 .

[47]  T. Greville,et al.  Band matrices with Toeplitz inverses , 1979 .

[48]  B. J. Winer Statistical Principles in Experimental Design , 1992 .

[49]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[50]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[51]  Russel E. Caflisch,et al.  An inverse problem for Toeplitz matrices and the synthesis of discrete transmission lines , 1981 .

[52]  M. Pagano An Algorithm for Fitting Autoregressive Schemes , 1972 .

[53]  W. C. Nelson,et al.  Tests for correlation matrices , 1968 .

[54]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[55]  James Durbin,et al.  The fitting of time series models , 1960 .

[56]  Alfred M. Bruckstein,et al.  Fast matrix factorizations via discrete transmission lines , 1986 .

[57]  I. S. Iokhvidov Hankel and Toeplitz Matrices and Forms: Algebraic Theory , 1982 .

[58]  T. Kailath,et al.  On a generalized Szegö- Levinson realization algorithm for optimal linear predictors based on a network synthesis approach , 1978 .

[59]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[60]  J. Rissanen Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials , 1973 .

[61]  Emanuel Parzen,et al.  Efficient Estimation of Stationary Time Series Mixed Schemes. , 1971 .

[62]  Harold Widom Inversion of Toeplitz matrices II , 1959 .

[63]  Bernd Silbermann,et al.  Invertibility And Asymptotics Of Toeplitz Matrices , 1990 .