Bayesian inversion of log-normal eikonal equations
暂无分享,去创建一个
[1] 山崎 泰郎,et al. Measures on infinite dimensional spaces , 2021, Mathematical Feynman Path Integrals and Their Applications.
[2] Christoph Schwab,et al. Multilevel Markov Chain Monte Carlo for Bayesian Inversion of Parabolic Partial Differential Equations under Gaussian Prior , 2021, SIAM/ASA J. Uncertain. Quantification.
[3] C. Schwab,et al. Analysis of a multilevel Markov chain Monte Carlo finite element method for Bayesian inversion of log-normal diffusions , 2020, Inverse Problems.
[4] B. Houchmandzadeh. The Hamilton-Jacobi Equation: an intuitive approach , 2019, 1910.09414.
[5] Michael B. Giles,et al. AN INTRODUCTION TO MULTILEVEL MONTE CARLO METHODS , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).
[6] Andrew M. Stuart,et al. Tikhonov Regularization within Ensemble Kalman Inversion , 2019, SIAM J. Numer. Anal..
[7] C. M. Elliott,et al. Binary recovery via phase field regularization for first-arrival traveltime tomography , 2018, Inverse Problems.
[8] Josef Dick,et al. Improved Efficiency of a Multi-Index FEM for Computational Uncertainty Quantification , 2018, SIAM J. Numer. Anal..
[9] Matthew M. Dunlop,et al. Reconciling Bayesian and Perimeter Regularization for Binary Inversion , 2017, SIAM J. Sci. Comput..
[10] Marco A. Iglesias,et al. A Bayesian Level Set Method for Geometric Inverse Problems , 2015, 1504.00313.
[11] A. Beskos,et al. Multilevel sequential Monte Carlo samplers , 2015, 1503.07259.
[12] Kody J. H. Law,et al. Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..
[13] Bangti Jin,et al. Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems , 2014, 1402.5068.
[14] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[15] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[16] V. Hoang. Bayesian inverse problems in measure spaces with application to Burgers and Hamilton–Jacobi equations with white noise forcing , 2012 .
[17] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[18] Charles M. Elliott,et al. Numerical analysis of an inverse problem for the eikonal equation , 2011, Numerische Mathematik.
[19] A. Small,et al. Simple derivations of the Hamilton–Jacobi equation and the eikonal equation without the use of canonical transformations , 2011 .
[20] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[21] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[22] C. J. Gittelson. STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .
[23] James C. Robinson,et al. Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .
[24] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[25] C. M. Elliott,et al. Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities , 2004 .
[26] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[27] J A Sethian,et al. A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[28] V. Bogachev. Gaussian Measures on a , 2022 .