Quantum-dot Mollow triplet in a semiconductor cavity-QED system

We present a semiconductor quantum optics formalism to study the dynamics of a coherently-driven semiconductor quantum dot interacting with an acoustic phonon bath and a high Q microcavity. A quantum master equation is derived in the polaron frame, where multiphoton and multiphoton effects are included to all orders. As applications of the theory, we study the Mollow triplet of a driven quantum dot in the regime of semiconductor cavity-QED. Pronounced signatures of electron-phonon-photon scattering are observed through excitation-induced dephasing and off-resonant cavity coupling. We also present an effective phonon master in Lindblad form and show example quantum trajectory simulations that help one to understand the features in the Mollow triplet spectra.