Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint

In this paper we study the convergence of an adaptive finite element method for optimal control problems with integral control constraint. For discretization, we use piecewise constant discretization for the control and continuous piecewise linear discretization for the state and the co-state. The contraction, between two consecutive loops, is proved. Additionally, we find the adaptive finite element method has the optimal convergence rate. In the end, we give some examples to support our theoretical analysis.

[1]  Danping Yang,et al.  Adaptive Finite Element Approximation for a Constrained Optimal Control Problem via Multi-meshes , 2009, J. Sci. Comput..

[2]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[3]  Wenbin Liu,et al.  Local A Posteriori Error Estimates for Convex Boundary Control Problems , 2009, SIAM J. Numer. Anal..

[4]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[5]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[6]  Ronald H. W. Hoppe,et al.  Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .

[7]  Shipeng Mao,et al.  Quasi-Optimality of Adaptive Nonconforming Finite Element Methods for the Stokes Equations , 2011, SIAM J. Numer. Anal..

[8]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[9]  Yanping Chen,et al.  A posteriori error estimates for hp finite element solutions of convex optimal control problems , 2011, J. Comput. Appl. Math..

[10]  Yanping Chen,et al.  A Posteriori Error Estimates of Mixed Methods for Parabolic Optimal Control Problems , 2010 .

[11]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[12]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[13]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[14]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[15]  Wenbin Liu,et al.  A Posteriori Error Estimates for Control Problems Governed by Stokes Equations , 2002, SIAM J. Numer. Anal..

[16]  Kunibert G. Siebert,et al.  A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..

[17]  Lianhua He,et al.  CONVERGENCE AND COMPLEXITY OF ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2011 .

[18]  Carsten Carstensen,et al.  Quasi-optimal Adaptive Pseudostress Approximation of the Stokes Equations , 2013, SIAM J. Numer. Anal..

[19]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[20]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[21]  Shipeng Mao,et al.  A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..

[22]  Kunibert G. Siebert,et al.  Convergence of Adaptive Finite Elements for Optimal Control Problems with Control Constraints , 2014 .

[23]  Wei Gong,et al.  Adaptive finite element method for elliptic optimal control problems: convergence and optimality , 2015, Numerische Mathematik.

[24]  Kunibert G. Siebert,et al.  Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems , 2013 .

[25]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[26]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[27]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[28]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[29]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[30]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[31]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[32]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[33]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[34]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..