Ultralow lattice thermal conductivity induced by anharmonic cation rattling and significant role of intrinsic point defects in TlBiS2

[1]  Ming Hu,et al.  Phonon transport anomaly in metavalent bonded materials: contradictory to the conventional theory , 2021, Journal of Materials Science.

[2]  David J. Singh,et al.  Thermoelectrics by Computational Design: Progress and Opportunities , 2021, Annual Review of Materials Research.

[3]  Anubhav Jain,et al.  Efficient calculation of carrier scattering rates from first principles , 2020, Nature Communications.

[4]  N. Neophytou,et al.  Correction to “Ultra-High Thermoelectric Power Factors in Narrow Gap Materials with Asymmetric Bands” , 2020, The Journal of Physical Chemistry C.

[5]  S. Banerjee,et al.  Lattice Anharmonicity of Stereochemically Active Lone Pairs Controls Thermochromic Band Gap Reduction of PbVO3Cl , 2020, Chemistry of Materials.

[6]  Neophytos Neophytou,et al.  Material Descriptors for the Discovery of Efficient Thermoelectrics , 2020, 2006.02789.

[7]  G. J. Snyder,et al.  When band convergence is not beneficial for thermoelectrics , 2020, Nature Communications.

[8]  K. Schwarz,et al.  WIEN2k: An APW+lo program for calculating the properties of solids. , 2020, The Journal of chemical physics.

[9]  N. Neophytou,et al.  Impact of the scattering physics on the power factor of complex thermoelectric materials , 2019, Journal of Applied Physics.

[10]  Yang Jiang,et al.  Cu4Bi4Se9: A Thermoelectric Symphony of Rattling, Anharmonic Lone-pair and Structural Complexity. , 2019, ACS applied materials & interfaces.

[11]  B. Iversen,et al.  Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment , 2019, npj Computational Materials.

[12]  D. J. Singh,et al.  Lorenz number in relation to estimates based on the Seebeck coefficient , 2019, Materials Today Physics.

[13]  David J. Singh,et al.  Dielectric Behavior as a Screen in Rational Searches for Electronic Materials: Metal Pnictide Sulfosalts. , 2018, Journal of the American Chemical Society.

[14]  F. Bianchini,et al.  Properties of Novel Non-Silicon Materials for Photovoltaic Applications: A First-Principle Insight , 2018, Materials.

[15]  Jun Mao,et al.  Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials , 2017, Proceedings of the National Academy of Sciences.

[16]  Li-dong Zhao,et al.  Promising Thermoelectric Bulk Materials with 2D Structures , 2017, Advanced materials.

[17]  Wei Chen,et al.  An ab initio electronic transport database for inorganic materials , 2017, Scientific Data.

[18]  Zhenxiang Cheng,et al.  Ag-Mg antisite defect induced high thermoelectric performance of α-MgAgSb , 2017, Scientific Reports.

[19]  U. Waghmare,et al.  Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe2. , 2017, Journal of the American Chemical Society.

[20]  Anubhav Jain,et al.  Effective mass and Fermi surface complexity factor from ab initio band structure calculations , 2017, npj Computational Materials.

[21]  Lihua Wu,et al.  Band engineering and rational design of high-performance thermoelectric materials by first-principles , 2016 .

[22]  R. He,et al.  Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds , 2016, Scientific Reports.

[23]  David J. Singh,et al.  On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective , 2016 .

[24]  G. Samsonidze,et al.  Accelerated Screening of Thermoelectric Materials by First‐Principles Computations of Electron–Phonon Scattering , 2015, 1511.08115.

[25]  D. Morelli,et al.  Better thermoelectrics through glass-like crystals. , 2015, Nature materials.

[26]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[27]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015, Journal of the American Chemical Society.

[28]  Wei Lai,et al.  From Bonding Asymmetry to Anharmonic Rattling in Cu12Sb4S13 Tetrahedrites: When Lone‐Pair Electrons Are Not So Lonely , 2015 .

[29]  Stefano Curtarolo,et al.  Low thermal conductivity and triaxial phononic anisotropy of SnSe , 2014, 1406.3532.

[30]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[31]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[32]  David J. Singh,et al.  Importance of non-parabolic band effects in the thermoelectric properties of semiconductors , 2013, Scientific Reports.

[33]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[34]  Mengqiu Long,et al.  First-principles prediction of charge mobility in carbon and organic nanomaterials. , 2012, Nanoscale.

[35]  Yong Liu,et al.  Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS , 2012, Journal of Alloys and Compounds.

[36]  Yuanxu Wang,et al.  Crystal structure, electronic structure, and thermoelectric properties of Ca5Al2Sb6 , 2011 .

[37]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[38]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[39]  K. Koumoto,et al.  Development of novel thermoelectric materials by reduction of lattice thermal conductivity , 2010, Science and technology of advanced materials.

[40]  Ji-Hui Yang,et al.  Automotive Applications of Thermoelectric Materials , 2009 .

[41]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[42]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[43]  N. Popovich Thermoelectric Properties of the TlBiS2-PbS Alloys , 2005 .

[44]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[45]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[46]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[47]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[48]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[49]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[50]  David J. Singh,et al.  TransOpt. A code to solve electrical transport properties of semiconductors in constant electron–phonon coupling approximation , 2021 .

[51]  Yan-cheng Wang,et al.  Hierarchical Chemical Bonds Contributing to the Intrinsically Low Thermal Conductivity in α‐MgAgSb Thermoelectric Materials , 2017 .