Analysis of the self-similar solutions of the nonplanar Burgers equation

[1]  P. L. Sachdev,et al.  A Compendium on Nonlinear Ordinary Differential Equations , 1996 .

[2]  T. Cazenave,et al.  A Two-Parameter Shooting Problem for a Second-Order Differential Equation , 1994 .

[3]  L. Debnath,et al.  Classification of Self Similar Solutions to a Generalized Burgers Equation , 1994 .

[4]  Miguel Escobedo,et al.  Large time behavior for convection-diffusion equations in RN , 1991 .

[5]  P. Sachdev Nonlinear Ordinary Differential Equations and Their Applications , 1990 .

[6]  L. Peletier,et al.  A very singular solution of the heat equation with absorption , 1986 .

[7]  P. L. Sachdev,et al.  Generalized Burgers equations and Euler–Painlevé transcendents. II , 1986 .

[8]  L. Peletier,et al.  Ground states and Dirichlet problems for-Δu=f(u) in R2 , 1986 .

[9]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[10]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[11]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  L. Peletier,et al.  A very singular solution and other self-similar solutions of the heat equation with convection , 1995 .

[13]  R. E. Grundy,et al.  Nonlinear Diffusion Phenomenon , 1994 .

[14]  G. Stampacchia,et al.  Ordinary Differential Equations in Rn: Problems and Methods , 1984 .