The VLT-FLAMES Tarantula Survey - XXI. Stellar spin rates of O-type spectroscopic binaries

Context. The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems. Aims. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars. Methods. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. Results. The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.

[1]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[2]  O. Absil,et al.  SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION , 2014, 1409.6304.

[3]  M. Krumholz The Formation of Very Massive Stars , 2014, 1403.3417.

[4]  Institute for Astronomy,et al.  The VLT-FLAMES Tarantula Survey. XIV. The O-type stellar content of 30 Doradus , 2014, 1402.6969.

[5]  G. Meynet,et al.  The evolution of massive stars and their spectra - I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage , 2014, 1401.7322.

[6]  S. D. Mink,et al.  THE INCIDENCE OF STELLAR MERGERS AND MASS GAINERS AMONG MASSIVE STARS , 2013, 1312.3650.

[7]  A. Herrero,et al.  The IACOB project - I. Rotational velocities in northern Galactic O- and early B-type stars revisited. The impact of other sources of line-broadening , 2013, 1311.3360.

[8]  C. Tout,et al.  The Most Magnetic Stars , 2013, 1310.2696.

[9]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey - XII. Rotational velocities of the single O-type stars , 2013, 1309.2929.

[10]  G. Meynet,et al.  Evolution and fate of very massive stars , 2013, 1305.2099.

[11]  H. Sana,et al.  THE VLT-FLAMES TARANTULA SURVEY: AN OVERVIEW OF THE VFTS RESULTS SO FAR , 2013, 1311.0009.

[12]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey - X. Evidence for a bimodal distribution of rotational velocities for the single early B-type stars , 2012, 1212.2424.

[13]  S. D. Mink,et al.  THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS , 2012, 1211.3742.

[14]  G. Wade,et al.  A magnetic confinement versus rotation classification of massive-star magnetospheres , 2012, 1211.0282.

[15]  N. Langer,et al.  Rotating Wolf-Rayet stars in a post RSG/LBV phase An evolutionary channel towards long-duration GRBs? , 2012, 1210.1153.

[16]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population , 2012, 1209.4638.

[17]  S. Banerjee,et al.  Very Massive Stars in the local Universe , 2012, Proceedings of the International Astronomical Union.

[18]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[19]  C. Neiner,et al.  NGC 1624-2: A slowly rotating, X-ray luminous Of?cp star with an extraordinarily strong magnetic field , 2012, 1206.2834.

[20]  P. Massey,et al.  Grids of stellar models with rotation - II. WR populations and supernovae/GRB progenitors at Z = 0.014 , 2012, 1203.5243.

[21]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[22]  E. Ramirez-Ruiz,et al.  WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS? , 2012, 1201.4186.

[23]  S. Smartt,et al.  The O stars in the VLT-FLAMES Tarantula Survey , 2011 .

[24]  J. Vink,et al.  In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars , 2011, 1111.5806.

[25]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[26]  J. Berger,et al.  THE NON-THERMAL RADIO EMITTER HD 93250 RESOLVED BY LONG BASELINE INTERFEROMETRY , 2011, 1110.0831.

[27]  M. Krumholz,et al.  Spin-down of protostars through gravitational torques , 2011, 1105.3205.

[28]  A. Z. Bonanos,et al.  The VLT-FLAMES Tarantula Survey: I. Introduction and observational overview⋆ , 2011, 1103.5386.

[29]  C. Evans,et al.  Rotating massive main-sequence stars - I. Grids of evolutionary models and isochrones , 2011, 1102.0530.

[30]  J. Vink,et al.  The masses, and the mass discrepancy of O-type stars , 2010, 1010.2204.

[31]  S. Mathis,et al.  Relaxed equilibrium configurations to model fossil fields I. A first family , 2010 .

[32]  D. Gies,et al.  A FUSE SURVEY OF THE ROTATION RATES OF VERY MASSIVE STARS IN THE SMALL AND LARGE MAGELLANIC CLOUDS , 2009, 0905.3681.

[33]  S. D. Mink,et al.  Rotational mixing in massive binaries - Detached short-period systems , 2009, 0902.1751.

[34]  H. Zinnecker,et al.  Toward Understanding Massive Star Formation , 2007, 0707.1279.

[35]  A. Herrero,et al.  Fourier method of determining the rotational velocities in OB stars , 2007, astro-ph/0703216.

[36]  M. Livio,et al.  Binary star progenitors of long gamma-ray bursts , 2007, astro-ph/0702540.

[37]  S. Smartt,et al.  The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC , 2006, astro-ph/0606403.

[38]  D. Gies,et al.  Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions , 2005, astro-ph/0510450.

[39]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[40]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[41]  H. Levato,et al.  Rotational Velocities of B Stars , 2002 .

[42]  S. Owocki,et al.  Dynamical Simulations of Magnetically Channeled Line-driven Stellar Winds. I. Isothermal, Nonrotating, Radially Driven Flow , 2002, astro-ph/0201195.

[43]  Medicine,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[44]  G. Meynet,et al.  THE EVOLUTION OF ROTATING STARS , 2000, astro-ph/0004204.

[45]  I. Howarth,et al.  Cross-correlation characteristics of OB stars from IUE spectroscopy , 1997 .

[46]  Laura R. Penny,et al.  Projected Rotational Velocities of O-Type Stars , 1996 .

[47]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[48]  D. Ebbets,et al.  Spectroscopic studies of O-type stars. VII. Rotational velocities V*sin(i) and evidence for macroturbulent motions. , 1977 .

[49]  A. Endal,et al.  The Evolution of Rotating Stars. , 1975 .

[50]  P. B. Boyce,et al.  A system of standard stars for rotational velocity determinations , 1975 .

[51]  J. A. Carroll The Spectroscopic Determination of Stellar Rotation and its Effect on Line Profiles , 1933 .

[52]  H. Spruit,et al.  Magnetic Fields throughout Stellar Evolution , 2014 .