MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell carcinoma.

[1]  H. Samonigg,et al.  Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer , 2012, British Journal of Cancer.

[2]  B. Jiang,et al.  MicroRNA-143 Targets MACC1 to Inhibit Cell Invasion and Migration in Colorectal cancer , 2012, Molecular Cancer.

[3]  Yuepu Pu,et al.  The Cluster of miR-143 and miR-145 Affects the Risk for Esophageal Squamous Cell Carcinoma through Co-Regulating Fascin Homolog 1 , 2012, PloS one.

[4]  S. Cook,et al.  ERK5 and its role in tumour development. , 2012, Biochemical Society transactions.

[5]  Min Su,et al.  miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. , 2011, Molecular medicine reports.

[6]  T. Takizawa,et al.  Relationship between altered expression levels of MIR21, MIR143, MIR145, and MIR205 and clinicopathologic features of esophageal squamous cell carcinoma. , 2011, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[7]  Y. Akao,et al.  MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. , 2011, Cancer letters.

[8]  M. Vasconcelos,et al.  miR-143 Overexpression Impairs Growth of Human Colon Carcinoma Xenografts in Mice with Induction of Apoptosis and Inhibition of Proliferation , 2011, PloS one.

[9]  E. Li,et al.  MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. , 2011, World journal of gastroenterology.

[10]  Masayuki Kano,et al.  miR‐145, miR‐133a and miR‐133b: Tumor‐suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma , 2010, International journal of cancer.

[11]  H. Zhang,et al.  microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. , 2010, Oncology reports.

[12]  Arndt Hartmann,et al.  The MicroRNA Profile of Prostate Carcinoma Obtained by Deep Sequencing , 2010, Molecular Cancer Research.

[13]  Y. Akao,et al.  Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. , 2009, Leukemia research.

[14]  S. Culine,et al.  miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate Cancer Progression in Mice , 2009, PloS one.

[15]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[16]  Deepak Srivastava,et al.  miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions , 2009, Nature.

[17]  Y. Fujii,et al.  Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR , 2009, Medical Molecular Morphology.

[18]  Y. Akao,et al.  Decreased Expression of MicroRNA-143 and -145 in Human Gastric Cancers , 2009, Oncology.

[19]  X. Chen,et al.  Role of miR-143 targeting KRAS in colorectal tumorigenesis , 2009, Oncogene.

[20]  A. Eklund,et al.  MicroRNA profile analysis of human prostate cancers , 2009, Cancer Gene Therapy.

[21]  Q. Pan,et al.  MicroRNA-143 as a tumor suppressor for bladder cancer. , 2009, The Journal of urology.

[22]  S. Le,et al.  Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth , 2008, PloS one.

[23]  Shuomin Zhu,et al.  MicroRNA-21 targets tumor suppressor genes in invasion and metastasis , 2008, Cell Research.

[24]  Yukio Kitade,et al.  Downregulation of microRNAs‐143 and ‐145 in B‐cell malignancies , 2007, Cancer science.

[25]  Y. Akao,et al.  MicroRNA-143 and -145 in colon cancer. , 2007, DNA and cell biology.

[26]  S. Tsunoda,et al.  The Suppression of Aurora-A/STK15/BTAK Expression Enhances Chemosensitivity to Docetaxel in Human Esophageal Squamous Cell Carcinoma , 2007, Clinical Cancer Research.

[27]  George P Cobb,et al.  microRNAs as oncogenes and tumor suppressors. , 2007, Developmental biology.

[28]  Y. Akao,et al.  MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. , 2006, Oncology reports.

[29]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[30]  C. Croce,et al.  miRNAs, Cancer, and Stem Cell Division , 2005, Cell.

[31]  J. Mendell MicroRNAs: Critical Regulators of Development, Cellular Physiology and Malignancy , 2005, Cell cycle.

[32]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[33]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[34]  N. Hu,et al.  Evaluation of BRCA2 in the genetic susceptibility of familial esophageal cancer , 2004, Oncogene.

[35]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[36]  Michael T. McManus,et al.  MicroRNAs and cancer. , 2003, Seminars in cancer biology.

[37]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Quan-hong Wang,et al.  Identification of novel regions of allelic loss from a genomewide scan of esophageal squamous‐cell carcinoma in a high‐risk Chinese population , 2000, Genes, chromosomes & cancer.

[39]  M. Kitajima,et al.  Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[40]  L. Liotta,et al.  Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations , 1999, Genes, chromosomes & cancer.

[41]  C. Moskaluk,et al.  Comparative genomic hybridization of esophageal and gastroesophageal adenocarcinomas shows consensus areas of DNA gain and loss , 1998, Genes, chromosomes & cancer.

[42]  P. Hainaut,et al.  Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. , 1998, Cancer research.

[43]  C. Harris,et al.  Altered expression of the cyclin D1 and retinoblastoma genes in human esophageal cancer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R Montesano,et al.  Frequent mutation of the p53 gene in human esophageal cancer. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Burow,et al.  MEK5/ERK5 pathway: the first fifteen years. , 2012, Biochimica et biophysica acta.

[46]  Jan-Gowth Chang,et al.  Molecular cytogenetic characterization of esophageal cancer detected by comparative genomic hybridization , 2010, Journal of clinical laboratory analysis.

[47]  P. Enzinger,et al.  Esophageal cancer. , 2003, The New England journal of medicine.

[48]  E. Wilder,et al.  Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells. , 2002, Cancer research.

[49]  W. Blot,et al.  The changing epidemiology of esophageal cancer. , 1999, Seminars in oncology.