Effect of time-delay on a food chain model

This paper aims to study the effect of discrete time-delay on a tritrophic food chain model with Holling type-II functional responses. Dynamical behaviours such as boundedness, stability, persistence and bifurcation of the model are studied. Our analytical findings are illustrated through computer simulation. Biological implications of our analytical findings are addressed critically.

[1]  Joseph W.-H. So,et al.  Global stability and persistence of simple food chains , 1985 .

[2]  Alakes Maiti,et al.  Deterministic and stochastic analysis of a prey-dependent predator–prey system , 2005 .

[3]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[4]  Malay Bandyopadhyay,et al.  Deterministic and stochastic analysis of a nonlinear prey-predator system , 2003 .

[5]  Regino Zamora,et al.  Top‐Down Effects in a Tritrophic System: Parasitoids Enhance Plant Fitness , 1994 .

[6]  Y. Takeuchi,et al.  Persistence and periodic orbits of a three-competitor model with refuges. , 1992, Mathematical biosciences.

[7]  H. I. Freedman,et al.  A mathematical model of facultative mutualism with populations interacting in a food chain. , 1989, Mathematical biosciences.

[8]  M E Gilpin,et al.  Enriched predator-prey systems: theoretical stability. , 1972, Science.

[9]  H. I. Freedman,et al.  Hopf bifurcation in three-species food chain models with group defense. , 1992, Mathematical biosciences.

[10]  Marcel Abendroth,et al.  Biological delay systems: Linear stability theory , 1990 .

[11]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .

[12]  D. Padilla,et al.  Food and environmental cues trigger an inducible offence , 2001 .

[13]  Ted C. J. Turlings,et al.  Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids , 2001 .

[14]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[15]  Marcel Dicke,et al.  Parasitoid‐plant mutualism: parasitoid attack of herbivore increases plant reproduction , 2000 .

[16]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[17]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[18]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[19]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[20]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[21]  M. Mochizuki,et al.  Effectiveness and pesticide susceptibility of the pyrethroid-resistant predatory mite Amblyseius womersleyi in the integrated pest management of tea pests , 2003, BioControl.

[22]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[23]  Yang Kuang,et al.  Simple Food Chain in a Chemostat with Distinct Removal Rates , 2000 .

[24]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[25]  T. Gard,et al.  Persistence in food chains with general interactions , 1980 .

[26]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[27]  H. I. Freedman,et al.  Persistence in a model of three competitive populations , 1985 .