Mesoscale symmetries explain dynamical equivalence of food webs

A present challenge in complex systems is to identify mesoscale structures that have distinct dynamical implications. In this paper we present a detailed investigation of a previously observed dynamical equivalence of certian ecological food webs. We show that this equivalence is rooted in mesoscale symmetries that exist in these webs. Certain eigenvectors of the Jacobian describing dynamical modes of the system, such as specific instabilities or responses to perturbations, localize on these symmetric motifs. On the one hand this means that by removing a symmetry from the network one obtains a system which has identical dynamics except for the removal of the localized mode. This explains the previously observed equivalence. On the other hand it means that we can identify dynamical modes that only depend on the symmetric motif. Symmetric structures thus provide an example for mesoscale network motifs having distinct and exact implications for the dynamics.

[1]  J. Steele,et al.  The role of predation in plankton models , 1992 .

[2]  J. Lawton Webbing and WIWACS , 1995 .

[3]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Bernhard Sendhoff,et al.  Robustness of glycolysis in yeast to internal and external noise. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Neo D. Martinez,et al.  Compilation and Network Analyses of Cambrian Food Webs , 2008, PLoS biology.

[7]  Thilo Gross,et al.  Long food chains are in general chaotic , 2005 .

[8]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Yoh Iwasa,et al.  Aggregation in Model Ecosystems II. Approximate Aggregation , 1989 .

[10]  Thilo Gross,et al.  Bifurcations and chaos in the MAPK signaling cascade. , 2010, Journal of theoretical biology.

[11]  J. Adams The definition and interpretation of guild structure in ecological communities , 1985 .

[12]  D. Fell Metabolic control analysis: a survey of its theoretical and experimental development. , 1992, The Biochemical journal.

[13]  Thilo Gross,et al.  General analysis of mathematical models for bone remodeling. , 2010, Bone.

[14]  Rubén J. Sánchez-García,et al.  Spectral characteristics of network redundancy. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  K. Havens,et al.  Scale and Structure in Natural Food Webs , 1992, Science.

[16]  P. Ruardij,et al.  The European regional seas ecosystem model, a complex marine ecosystem model , 1995 .

[17]  S. Jennings,et al.  Abundance-body mass relationships in size-structured food webs , 2003 .

[18]  Philip H. Warren,et al.  Spatial and temporal variation in the structure of a freshwater food web , 1989 .

[19]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[20]  J. Bascompte,et al.  Ecological networks : beyond food webs Ecological networks – beyond food webs , 2008 .

[21]  Thilo Gross,et al.  Dynamical analysis of evolution equations in generalized models , 2010, 1012.4340.

[22]  Richard K. Crump,et al.  Nonparametric Tests for Treatment Effect Heterogeneity , 2006, The Review of Economics and Statistics.

[23]  U. Gaedke A comparison of whole-community and ecosystem approaches (biomass size distributions, food web analysis, network analysis, simulation models) to study the structure, function and regulation of pelagic food webs , 1995 .

[24]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[25]  A. Solow,et al.  ON LUMPING SPECIES IN FOOD WEBS , 1998 .

[26]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[27]  Thilo Gross,et al.  Local dynamical equivalence of certain food webs , 2009, 0906.0381.

[28]  Thilo Gross,et al.  Generalized Models Reveal Stabilizing Factors in Food Webs , 2009, Science.

[29]  Neo D. Martinez Effects of resolution on food web structure , 1993 .

[30]  G. Polis,et al.  Food Web Complexity and Community Dynamics , 1996, The American Naturalist.

[31]  Thilo Gross,et al.  Food Quality in Producer‐Grazer Models: A Generalized Analysis , 2010, The American Naturalist.

[32]  S. Jørgensen,et al.  Movement rules for individual-based models of stream fish , 1999 .

[33]  H. Houthakker,et al.  Income and Price Elasticities in World Trade , 1969 .

[34]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[35]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[36]  K. Banse,et al.  Adult Body Mass and Annual Production/Biomass Relationships of Field Populations , 1980 .

[37]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[38]  Jean-Pierre Gabriel,et al.  Complexity in quantitative food webs. , 2009, Ecology.

[39]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[40]  Charles M. Newman,et al.  Community Food Webs , 1990 .

[41]  Carsten F. Dormann,et al.  Ecological networks - foodwebs and beyond , 2009 .

[42]  Y. Iwasa,et al.  Aggregation in model ecosystems. I. Perfect aggregation , 1987 .

[43]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[44]  Jordi Bascompte,et al.  SIMPLE TROPHIC MODULES FOR COMPLEX FOOD WEBS , 2005 .

[45]  Stephen R. Carpenter,et al.  Ecological community description using the food web, species abundance, and body size , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  李基炯,et al.  § 14 , 1982, Fichte.

[47]  Joel E. Cohen,et al.  Food web patterns and their consequences , 1991, Nature.

[48]  Thilo Gross,et al.  Generalized models as a universal approach to the analysis of nonlinear dynamical systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Dirk Olbers,et al.  Ocean Dynamics , 2012 .

[50]  Thilo Gross,et al.  Generalized modeling of ecological population dynamics , 2010, Theoretical Ecology.

[51]  B. Drossel,et al.  Boolean versus continuous dynamics on simple two-gene modules. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[53]  E. Reznik,et al.  On the stability of metabolic cycles. , 2010, Journal of theoretical biology.

[54]  Johannes M. Hofener,et al.  Engineering mesoscale structures with distinct dynamical implications in networks of delay-coupled delay oscillators , 2012, 1207.1319.

[55]  A. M. Edwards,et al.  The invisible niche: weakly density-dependent mortality and the coexistence of species. , 2009, Journal of theoretical biology.

[56]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.