Minateda rock shelters (Albacete) and post-palaeolithic art of the Mediterranean Basin in Spain: pigments, surfaces and patinas

The inorganic and organic fractions of two microsamples of prehistoric paint from the same site, the Minateda rock shelters, are analysed here for the first time. The two samples correspond to two rock shelters of different styles (Levantine and schematic) – Abrigo Grande de Minateda (The Great Rock Shelter of Minateda) and Abrigo del Barranco de la Mortaja (Del Barranco de la Mortaja Rock Shelter). Since its discovery, historiographical tradition has emphasised the Abrigo Grande de Minateda, with its magnificence and complexity, as emblematic of the origin and evolution of rock art in the Mediterranean Basin of the Iberian Peninsula (a UNESCO World Heritage Site). Four complementary techniques –Microphotography, Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDX), Raman Spectroscopy and Gas Chromatography–Mass Spectroscopy (GC–MS)– were combined to identify and characterise the physicochemical properties of the paint and of the surface. We present an interpretation of the results that leads us to define complex taphonomic alterations beyond the usual distinction of layers that include the surface, pigments and patinas.

[1]  J. M. Gavira-Vallejo,et al.  Calcium oxalate AMS 14C dating and chronology of post-Palaeolithic rock paintings in the Iberian Peninsula. Two dates from Abrigo de los Oculados (Henarejos, Cuenca, Spain) , 2012 .

[2]  M. Maier,et al.  Chemical analyses of the earliest pigment residues from the uttermost part of the planet (Beagle Channel region, Tierra del Fuego, Southern South America) , 2008 .

[3]  A. Hernanz,et al.  Raman microscopy and IR spectroscopy of prehistoric paintings from Los Murciélagos cave (Zuheros, Córdoba, Spain) , 2006 .

[4]  A. Pradhan,et al.  In situ micro-Raman investigation of dehydration mechanism in natural gypsum , 2001 .

[5]  M. Lorblanchet,et al.  An initial Raman microscopic investigation of prehistoric rock art in caves of the Quercy District, S.W. France , 1999 .

[6]  Cristina Sabbioni,et al.  The origin of calcium oxalates on historical buildings, monuments and natural outcrops , 1987 .

[7]  J. Schibler,et al.  Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland – evidence for dairying in the late Neolithic , 2006 .

[8]  Valme Jurado,et al.  Laboratory and in situ assays of digital image analysis based protocols for biodeteriorated rock and mural paintings recording , 2011 .

[9]  R. Casamiquela,et al.  Análisis de las fracciones inorgánica y orgánica de pinturas rupestres y pastas de sitios arqueológicos de la Patagonia Septentrional Argentina , 2013 .

[10]  K. Heinrich,et al.  Electron Probe Quantitation , 1991, Springer US.

[11]  J. Garrido,et al.  ESTUDIO ESTRATIGRÁFICO Y COMPONENTES PICTÓRICOS DEL ARTE PREHISTÓRICO DE MURCIA (SURESTE DE ESPANA , 1991 .

[12]  R. Frost,et al.  Raman spectroscopy of natural oxalates at 298 and 77 K , 2003 .

[13]  J. M. Gavira-Vallejo,et al.  A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain , 2008 .

[14]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[15]  R. Fort,et al.  La Piedra de Novelda: una roca muy utilizada en el patrimonio arquitectónico , 2002 .

[16]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  Martí Mas Cornellá,et al.  Cronologías absolutas y cronologías relativas. En torno a las secuencias iniciales del arte rupestre postpaleolítico en el Arco Mediterráneo , 2012 .

[18]  P. Maravelaki-Kalaitzaki,et al.  Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): characterization and origin , 2005 .

[19]  M. Lorblanchet,et al.  Preliminary investigations by Raman microscopy of prehistoric pigments in the wall‐painted cave at Roucadour, Quercy, France , 2006 .

[20]  Raymond White,et al.  The organic chemistry of museum objects , 1987 .

[21]  C. Vázquez,et al.  Combining TXRF, FT-IR and GC–MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (Jujuy, Argentina) , 2008, Analytical and bioanalytical chemistry.

[22]  J. M. Gavira-Vallejo,et al.  Raman microscopy of prehistoric rock paintings from the Hoz de Vicente, Minglanilla, Cuenca, Spain , 2010 .

[23]  P. B. Ramírez,et al.  Style v dans le bassin du Douro: Tradition et changement dans les graphies des chasseurs du Paléolithique Supérieur européen , 2007 .

[24]  C. Ayora,et al.  Disolución y precipitación de carbonatos en sistemas hidrotermales. Implicaciones en la génesis de depósitos tipo MVT , 2007 .

[25]  Clodoaldo Roldán García Análisis de pigmentos en conjuntos de arte rupestre , 2009 .

[26]  J. Clottes,et al.  La préparation des peintures magdaléniennes des cavernes ariégeoises in Spécial Préhistoire : 50e anniversaire de la découverte de Lascaux. , 1990 .

[27]  H. Edwards,et al.  Raman spectroscopic analysis of pigments and substrata in prehistoric rock art , 2000 .

[28]  R. Evershed,et al.  Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. , 2005, The Analyst.

[29]  C. Couraud Pigments utilisés en Préhistoire. Provenance, préparation, mode d'utilisation , 1988 .

[30]  Martí Mas Cornellá La Cueva del Tajo de las Figuras , 2005 .

[31]  J. Clottes,et al.  LE LIANT DES PEINTURES PALEOLITHIQUES ARIEGEOISES , 1991 .

[32]  Pedro Carmona,et al.  Infrared and Raman spectroscopy of urinary calculi: A review , 1997 .