Phase transitions from exp⁡(n1/2) to exp⁡(n2/3) in the asymptotics of banded plane partitions

We examine the asymptotics of a class of banded plane partitions under a varying bandwidth parameter $m$, and clarify the transitional behavior for large size $n$ and increasing $m=m(n)$ to be from $c_1 n^{-1} \exp(c_2 n^{1/2})$ to $c_3 n^{-49/72} \exp(c_4 n^{2/3} + c_5 n^{1/3})$ for some explicit coefficients $c_1, \ldots, c_5$. The method of proof, which is a unified saddle-point analysis for all phases, is general and can be extended to other classes of plane partitions.

[1]  R. Stanley Theory and Application of Plane Partitions. Part 2 , 1971 .

[2]  H. R. Pitt Divergent Series , 1951, Nature.

[3]  T. Apostol Introduction to analytic number theory , 1976 .

[4]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[5]  R. Ayoub An Introduction to the Analytic Theory of Numbers , 2006 .

[6]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[7]  G. Meinardus,et al.  Asymptotische aussagen über Partitionen , 1953 .

[8]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[9]  Ljuben Mutafchiev THE SIZE OF THE LARGEST PART OF RANDOM PLANE PARTITIONS OF LARGE INTEGERS , 2006 .

[10]  Asymptotic formulæ in combinatory analysis , 2013 .

[11]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[12]  Basil Gordon,et al.  Notes on plane partitions III , 1969 .

[13]  E. P. Kamenov,et al.  The limiting distribution of the trace of a random plane partition , 2004 .

[14]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[15]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[16]  Ljuben R. Mutafchiev The Size of the Largest Part of Random Weighted Partitions of Large Integers , 2013, Comb. Probab. Comput..

[17]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[18]  Boris Pittel,et al.  On Dimensions of a Random Solid Diagram , 2005, Combinatorics, Probability and Computing.

[19]  N. Sloane The on-line encyclopedia of integer sequences , 2018, Notices of the American Mathematical Society.

[20]  Guo-Niu Han,et al.  Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions , 2017, Adv. Appl. Math..

[21]  Basil Gordon,et al.  Notes on plane partitions. I , 1968 .

[22]  Guo-Niu Han,et al.  Skew doubled shifted plane partitions: Calculus and asymptotics , 2017, Electronic Research Archive.

[23]  F. Olver Asymptotics and Special Functions , 1974 .

[24]  C. Hammer Higher transcendental functions, Volume I: by Harry Bateman (compiled by the staff of the Bateman Manuscript Project). 302 pages, 16 × 24 cm. New York, McGraw-Hill Book Co., Inc., 1953. Price, $6.50 , 1953 .

[25]  E. Wright,et al.  ASYMPTOTIC PARTITION FORMULAEI. PLANE PARTITIONS , 1931 .

[26]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[27]  P. Erdös,et al.  The distribution of the number of summands in the partitions of a positive integer , 1941 .