Multi-dimensional entanglement transport through single-mode fibre

The global quantum network requires the distribution of entangled states over long distances, with significant advances already demonstrated using entangled polarisation states, reaching approximately 1200 km in free space and 100 km in optical fibre. Packing more information into each photon requires Hilbert spaces with higher dimensionality, for example, that of spatial modes of light. However spatial mode entanglement transport requires custom multimode fibre and is limited by decoherence induced mode coupling. Here we transport multi-dimensional entangled states down conventional single-mode fibre (SMF). We achieve this by entangling the spin-orbit degrees of freedom of a bi-photon pair, passing the polarisation (spin) photon down the SMF while accessing multi-dimensional orbital angular momentum (orbital) subspaces with the other. We show high fidelity hybrid entanglement preservation down 250 m of SMF across multiple 2x2 dimensions, demonstrating quantum key distribution protocols, quantum state tomographies and quantum erasers. This work offers an alternative approach to spatial mode entanglement transport that facilitates deployment in legacy networks across conventional fibre.

[1]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[2]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[3]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[4]  J. Rarity,et al.  Experimental violation of Bell's inequality based on phase and momentum. , 1990, Physical review letters.

[5]  Anthony J Leggett,et al.  Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem , 2006 .

[6]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[7]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Stephen M. Barnett,et al.  Precise quantum tomography of photon pairs with entangled orbital angular momentum , 2009 .

[9]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  A. Forbes,et al.  Erasing the orbital angular momentum information of a photon , 2017, 1702.06888.

[11]  J. P. Woerdman,et al.  Fiber transport of spatially entangled photons. , 2010, Physical review letters.

[12]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[13]  William J. Munro,et al.  On the measurement of qubits , 2005 .

[14]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[16]  Guang-Can Guo,et al.  Distribution of high-dimensional orbital angular momentum entanglement at telecom wavelength over 1km of optical fibre , 2018 .

[17]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Hermann Kampermann,et al.  Optimal super dense coding over noisy quantum channels , 2010, 1004.5573.

[20]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[21]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[22]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[23]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[24]  Federico Capasso,et al.  Arbitrary spin-to–orbital angular momentum conversion of light , 2017, Science.

[25]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[26]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[27]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[28]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[29]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[30]  S. P. Walborn,et al.  Double-slit quantum eraser , 2001, quant-ph/0106078.

[31]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[32]  M Ritsch-Marte,et al.  Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. , 2009, Optics express.

[33]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[34]  Michael Galili,et al.  Fiber based high-dimensional quantum communication with twisted photons , 2018, 1803.10138.

[35]  Sang Min Lee,et al.  Measurement of the entanglement between photonic spatial modes in optical fibers. , 2012, Physical review letters.

[36]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[37]  A. Zeilinger,et al.  Discrete, tunable color-entanglement , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[38]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[39]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[40]  M Ritsch-Marte,et al.  Holographic ghost imaging and the violation of a Bell inequality. , 2009, Physical review letters.

[41]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[42]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.