暂无分享,去创建一个
[1] Ingo Wegener,et al. New Results on the Complexity of the Middle Bit of Multiplication , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).
[2] Martin Rötteler,et al. Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.
[3] V.V. Shende,et al. Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[4] Alireza Shafaei,et al. Reversible logic synthesis of k-input, m-output lookup tables , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).
[5] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[6] Yasuhiro Takahashi,et al. A linear-size quantum circuit for addition with no ancillary qubits , 2005, Quantum Inf. Comput..
[7] M. Stone. The Generalized Weierstrass Approximation Theorem , 1948 .
[8] Thomas G. Draper,et al. A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..
[9] Niraj K. Jha,et al. RMDDS , 2014, ACM J. Emerg. Technol. Comput. Syst..
[10] J. Traub,et al. Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.
[11] R. Cleve,et al. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.
[12] Dmitri Maslov,et al. Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..
[13] Ricardo E. Monge,et al. A new method for the analysis of signals: the Square-Wave method , 2008, Revista de Matemática: Teoría y Aplicaciones.
[14] A. Harrow,et al. Quantum algorithm for linear systems of equations. , 2008, Physical review letters.
[15] Igor L. Markov,et al. Quantum Circuits for GCD Computation with $O(n \log n)$ Depth and O(n) Ancillae , 2013, ArXiv.
[16] Nathan Wiebe,et al. Floating point representations in quantum circuit synthesis , 2013, 1305.5528.
[17] Guoming Wang,et al. Quantum Algorithms for Curve Fitting , 2014, ArXiv.
[18] M. Mosca,et al. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[19] Krysta Marie Svore,et al. A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..
[20] G. Brassard,et al. Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.
[21] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[22] Andrew M. Childs,et al. Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.
[23] Alán Aspuru-Guzik,et al. Efficient quantum circuits for diagonal unitaries without ancillas , 2013, 1306.3991.
[24] Barenco,et al. Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[25] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[26] Stéphane Beauregard. Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..
[27] Martin Rötteler,et al. Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.
[28] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[29] Alán Aspuru-Guzik,et al. Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .
[30] Seth Lloyd,et al. Quantum algorithm for data fitting. , 2012, Physical review letters.
[31] Peter Selinger,et al. Quantum circuits of T-depth one , 2012, ArXiv.
[32] Neil J. Ross,et al. Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..
[33] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[34] Gerhard W. Dueck,et al. Techniques for the synthesis of reversible Toffoli networks , 2006, TODE.
[35] Pavel Pudlák,et al. The Complexity of Computations , 2013 .
[36] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[37] Krysta Marie Svore,et al. Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..
[38] Preskill,et al. Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[39] Gerhard W. Dueck,et al. A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[40] Beate Bollig,et al. New Results on the Most Significant Bit of Integer Multiplication , 2008, ISAAC.
[41] Shmuel Winograd,et al. Complexity Of Computations , 1978, ACM Annual Conference.
[42] R. V. Meter,et al. Fast quantum modular exponentiation , 2004, quant-ph/0408006.
[43] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[44] Christof Zalka,et al. Shor's discrete logarithm quantum algorithm for elliptic curves , 2003, Quantum Inf. Comput..
[45] Thomas G. Draper,et al. A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.