Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits

We develop a method for approximate synthesis of single--qubit rotations of the form $e^{-i f(\phi_1,\ldots,\phi_k)X}$ that is based on the Repeat-Until-Success (RUS) framework for quantum circuit synthesis. We demonstrate how smooth computable functions $f$ can be synthesized from two basic primitives. This synthesis approach constitutes a manifestly quantum form of arithmetic that differs greatly from the approaches commonly used in quantum algorithms. The key advantage of our approach is that it requires far fewer qubits than existing approaches: as a case in point, we show that using as few as $3$ ancilla qubits, one can obtain RUS circuits for approximate multiplication and reciprocals. We also analyze the costs of performing multiplication and inversion on a quantum computer using conventional approaches and find that they can require too many qubits to execute on a small quantum computer, unlike our approach.

[1]  Ingo Wegener,et al.  New Results on the Complexity of the Middle Bit of Multiplication , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[2]  Martin Rötteler,et al.  Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.

[3]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Alireza Shafaei,et al.  Reversible logic synthesis of k-input, m-output lookup tables , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[5]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[6]  Yasuhiro Takahashi,et al.  A linear-size quantum circuit for addition with no ancillary qubits , 2005, Quantum Inf. Comput..

[7]  M. Stone The Generalized Weierstrass Approximation Theorem , 1948 .

[8]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[9]  Niraj K. Jha,et al.  RMDDS , 2014, ACM J. Emerg. Technol. Comput. Syst..

[10]  J. Traub,et al.  Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.

[11]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[12]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[13]  Ricardo E. Monge,et al.  A new method for the analysis of signals: the Square-Wave method , 2008, Revista de Matemática: Teoría y Aplicaciones.

[14]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[15]  Igor L. Markov,et al.  Quantum Circuits for GCD Computation with $O(n \log n)$ Depth and O(n) Ancillae , 2013, ArXiv.

[16]  Nathan Wiebe,et al.  Floating point representations in quantum circuit synthesis , 2013, 1305.5528.

[17]  Guoming Wang,et al.  Quantum Algorithms for Curve Fitting , 2014, ArXiv.

[18]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[20]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[21]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[22]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[23]  Alán Aspuru-Guzik,et al.  Efficient quantum circuits for diagonal unitaries without ancillas , 2013, 1306.3991.

[24]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[26]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[27]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[28]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[29]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[30]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[31]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[32]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Gerhard W. Dueck,et al.  Techniques for the synthesis of reversible Toffoli networks , 2006, TODE.

[35]  Pavel Pudlák,et al.  The Complexity of Computations , 2013 .

[36]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  Krysta Marie Svore,et al.  Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..

[38]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[39]  Gerhard W. Dueck,et al.  A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[40]  Beate Bollig,et al.  New Results on the Most Significant Bit of Integer Multiplication , 2008, ISAAC.

[41]  Shmuel Winograd,et al.  Complexity Of Computations , 1978, ACM Annual Conference.

[42]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[43]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[44]  Christof Zalka,et al.  Shor's discrete logarithm quantum algorithm for elliptic curves , 2003, Quantum Inf. Comput..

[45]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.