Explicit Constructions of Optimal-Access MDS Codes With Nearly Optimal Sub-Packetization

An <inline-formula> <tex-math notation="LaTeX">$(n,k,l)$ </tex-math></inline-formula> maximum distance separable (MDS) array code of length <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, dimension <inline-formula> <tex-math notation="LaTeX">$k=n-r$ </tex-math></inline-formula>, and sub-packetization <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula> is formed of <inline-formula> <tex-math notation="LaTeX">$l\times n$ </tex-math></inline-formula> matrices over a finite field <inline-formula> <tex-math notation="LaTeX">$F$ </tex-math></inline-formula>, with every column of the matrix stored on a separate node in the distributed storage system and viewed as a coordinate of the codeword. Repair of a failed node (recovery of one erased column) can be performed by accessing a set of <inline-formula> <tex-math notation="LaTeX">$d\le n-1$ </tex-math></inline-formula> surviving (helper) nodes. The code is said to have the optimal access property if the amount of data accessed at each of the helper nodes meets a lower bound on this quantity. For optimal-access MDS codes with <inline-formula> <tex-math notation="LaTeX">$d=n-1$ </tex-math></inline-formula>, the sub-packetization <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula> satisfies the bound <inline-formula> <tex-math notation="LaTeX">$l\ge r^{(k-1)/r}$ </tex-math></inline-formula>. In our previous work (IEEE Trans. Inf. Theory, vol. 63, no. 4, 2017), for any <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula>, we presented an explicit construction of optimal-access MDS codes with sub-packetization <inline-formula> <tex-math notation="LaTeX">$l=r^{n-1}$ </tex-math></inline-formula>. In this paper, we take up the question of reducing the sub-packetization value <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula> to make it to approach the lower bound. We construct an explicit family of optimal-access codes with <inline-formula> <tex-math notation="LaTeX">$l=r^{\lceil n/r\rceil }$ </tex-math></inline-formula>, which differs from the optimal value by at most a factor of <inline-formula> <tex-math notation="LaTeX">$r^{2}$ </tex-math></inline-formula>. These codes can be constructed over any finite field <inline-formula> <tex-math notation="LaTeX">$F$ </tex-math></inline-formula> as long as <inline-formula> <tex-math notation="LaTeX">$|F|\ge r\lceil n/r\rceil $ </tex-math></inline-formula>, and afford low-complexity encoding and decoding procedures. We also define a version of the repair problem that bridges the context of regenerating codes and codes with locality constraints (LRC codes), which we call <italic>group repair with optimal access</italic>. In this variation, we assume that the set of <inline-formula> <tex-math notation="LaTeX">$n=sm$ </tex-math></inline-formula> nodes is partitioned into <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> repair groups of size <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>, and require that the amount of accessed data for repair is the smallest possible whenever the <inline-formula> <tex-math notation="LaTeX">$d=s+k-1$ </tex-math></inline-formula> helper nodes include all the other <inline-formula> <tex-math notation="LaTeX">$s-1$ </tex-math></inline-formula> nodes from the same group as the failed node. For this problem, we construct a family of codes with the group optimal access property. These codes can be constructed over any field <inline-formula> <tex-math notation="LaTeX">$F$ </tex-math></inline-formula> of size <inline-formula> <tex-math notation="LaTeX">$|F|\ge n$ </tex-math></inline-formula>, and also afford low-complexity encoding and decoding procedures.

[1]  Alexander Barg,et al.  Explicit constructions of MDS array codes and RS codes with optimal repair bandwidth , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[2]  Venkatesan Guruswami,et al.  Repairing Reed-Solomon Codes , 2015, IEEE Transactions on Information Theory.

[3]  Arman Fazeli,et al.  Minimum Storage Regenerating Codes for All Parameters , 2017, IEEE Transactions on Information Theory.

[4]  Sriram Vishwanath,et al.  Progress on high-rate MSR codes: Enabling arbitrary number of helper nodes , 2016, 2016 Information Theory and Applications Workshop (ITA).

[5]  Alexander Barg,et al.  Explicit Constructions of High-Rate MDS Array Codes With Optimal Repair Bandwidth , 2016, IEEE Transactions on Information Theory.

[6]  Chih-Chun Wang,et al.  When Can Helper Node Selection Improve Regenerating Codes? Part I: Graph-Based Analysis , 2016, ArXiv.

[7]  P. Vijay Kumar,et al.  An Explicit, Coupled-Layer Construction of a High-Rate MSR Code with Low Sub-Packetization Level, Small Field Size and All-Node Repair , 2016, ArXiv.

[8]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2012, IEEE Transactions on Information Theory.

[9]  Jehoshua Bruck,et al.  Explicit Minimum Storage Regenerating Codes , 2016, IEEE Transactions on Information Theory.

[10]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[11]  Jehoshua Bruck,et al.  Zigzag Codes: MDS Array Codes With Optimal Rebuilding , 2011, IEEE Transactions on Information Theory.

[12]  P. Vijay Kumar,et al.  A high-rate MSR code with polynomial sub-packetization level , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[13]  Henk D. L. Hollmann,et al.  On the minimum storage overhead of distributed storage codes with a given repair locality , 2014, 2014 IEEE International Symposium on Information Theory.

[14]  Kannan Ramchandran,et al.  Exact-Repair MDS Code Construction Using Interference Alignment , 2011, IEEE Transactions on Information Theory.

[15]  Dimitris S. Papailiopoulos,et al.  Repair Optimal Erasure Codes Through Hadamard Designs , 2011, IEEE Transactions on Information Theory.

[16]  Natalia Silberstein,et al.  Constructions of high-rate minimum storage regenerating codes over small fields , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[17]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[18]  Jehoshua Bruck,et al.  On codes for optimal rebuilding access , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Kannan Ramchandran,et al.  Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions , 2010, IEEE Transactions on Information Theory.

[20]  Yunnan Wu,et al.  Reducing repair traffic for erasure coding-based storage via interference alignment , 2009, 2009 IEEE International Symposium on Information Theory.

[21]  Jehoshua Bruck,et al.  Explicit MDS Codes for Optimal Repair Bandwidth , 2014, ArXiv.

[22]  Natalia Silberstein,et al.  Constructions of High-Rate MSR Codes over Small Fields , 2015, 1505.00919.

[23]  Cheng Huang,et al.  Permutation code: Optimal exact-repair of a single failed node in MDS code based distributed storage systems , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[24]  Sriram Vishwanath,et al.  Optimal locally repairable codes with local minimum storage regeneration via rank-metric codes , 2013, 2013 Information Theory and Applications Workshop (ITA).

[25]  Itzhak Tamo,et al.  Optimal Repair of Reed-Solomon Codes: Achieving the Cut-Set Bound , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[26]  Jehoshua Bruck,et al.  Access Versus Bandwidth in Codes for Storage , 2014, IEEE Transactions on Information Theory.

[27]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[28]  Nihar B. Shah,et al.  Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction , 2010, IEEE Transactions on Information Theory.

[29]  Kannan Ramchandran,et al.  Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed Storage , 2013, IEEE Transactions on Information Theory.

[30]  Arya Mazumdar,et al.  Alphabet-size dependent bounds for exact repair in distributed storage , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).

[31]  P. Vijay Kumar,et al.  Codes With Local Regeneration and Erasure Correction , 2014, IEEE Transactions on Information Theory.

[32]  Cheng Huang,et al.  Polynomial length MDS codes with optimal repair in distributed storage , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[33]  Chih-Chun Wang,et al.  When Can Helper Node Selection Improve Regenerating Codes? Part II: An Explicit Exact-Repair Code Construction , 2016, ArXiv.