Thin Solids for Fluid-Structure Interaction

In this contribution the use of hexahedral elements for the structural simulation in a fluid structure interaction framework is presented, resulting in a consistent kinematic and geometric description of the solid. In order to compensate the additional numerical effort of the three-dimensional approach, an anisotropic p-adaptive method for linear elastodynamic problems is proposed, resulting in a clearly higher efficiency and higher convergence rates than uniform p-extensions. Special emphasis is placed on the accurate transfer of loads considering the fluid discretization for computation of the surface load integrals. For a coupling with a cartesian grid based Lattice Boltzmann code it was found that oscillations in the interface tractions may excite higher structural modes possibly leading to a non-stable coupling behavior. A first remedy to this problem was a linear modal analysis of the structure, thus allowing to control the number of modes to be considered without disregarding bidirectional fluid structure interactions. Preliminary results are presented for the FSI benchmark configuration proposed in this book.

[1]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[2]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[3]  Nils-Erik Wiberg,et al.  A Simple Local Error Estimator and an Adaptive Time-stepping Procedure for Direct Integration Method in Dynamic Analysis , 1993 .

[4]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[5]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[6]  K. Bathe Finite Element Procedures , 1995 .

[7]  J. Z. Zhu,et al.  The finite element method , 1977 .

[8]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[9]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[10]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[11]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[12]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[13]  Hans Rudolf Schwarz FORTRAN-Programme zur Methode der finiten Elemente , 1991 .

[14]  Ivo Babuška,et al.  The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .

[15]  Manfred Kaltenbacher,et al.  Elasto–acoustic and acoustic–acoustic coupling on non‐matching grids , 2006 .

[16]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[17]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[18]  E. Rank,et al.  SIMULATION OF BIDIRECTIONAL FLUID-STRUCTURE INTERACTION BASED ON EXPLICIT COUPLING APPROACHES OF LATTICE BOLTZMANN AND P-FEM SOLVERS , 2005 .

[19]  J. Tinsley Oden,et al.  Locking and boundary layer in hierarchical models for thin elastic structures , 1997 .

[20]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[21]  Barna A. Szabó,et al.  Quasi-regional mapping for the p-version of the finite element method , 1997 .

[22]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[23]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[24]  E. Rank,et al.  High order finite elements for shells , 2005 .

[25]  Zohar Yosibash,et al.  Solution of von-Kármán dynamic non-linear plate equations using a pseudo-spectral method , 2004 .

[26]  H. Broeker,et al.  Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM , 1999 .

[27]  Michael M. Resch,et al.  High performance computing in science and engineering , 2005, 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'05).

[28]  R. Kirby,et al.  Dynamic response of various von-Karman non-linear plate models and their 3-D counterparts , 2005 .

[29]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[30]  Nils-Erik Wiberg,et al.  A Post-Processing Technique and an a Posteriori Error Estimate for the Newmark Method in Dynamic Analysis , 1993 .

[31]  Ernst Rank,et al.  pq-Adaptive solid finite elements for three-dimensional plates and shells , 2007 .

[32]  Ernst Rank,et al.  Fully Three-Dimensional Coupling of Fluid and Thin-Walled Structures , 2005 .

[33]  Hans-Joachim Bungartz,et al.  Fluid-structure interaction : modelling, simulation, optimisation , 2006 .

[34]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[35]  Hans Rudolf Schwarz,et al.  Methode der finiten Elemente , 1984 .

[36]  Gregory M. Hulbert,et al.  Computational Structural Dynamics , 2004 .

[37]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[38]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment , 2006 .

[39]  Vera Nübel,et al.  Die adaptive rp-Methode für elastoplastische Probleme , 2005 .

[40]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[41]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .