Truly distribution-independent algorithms for the N-body problem

The N-body problem is to simulate the motion of N particles under the influence of mutual force fields based on an inverse square law. Greengard's algorithm claims to compute the cumulative force on each particle in O(N) time for a fixed precision irrespective of the distribution of the particles. In this paper, we show that Greengard's algorithm is distribution dependent and has a lower bound of /spl Omega/(N log/sup 2/ N) in two dimensions and /spl Omega/(N log/sup 4/ N) in three dimensions. We analyze the Greengard and Barnes-Hut algorithms and show that they are unbounded for arbitrary distributions. We also present a truly distribution independent algorithm for solving the N-body problem in O(N log N) time in two dimensions and in O(N log/sup 2/ N) time in three dimensions.<<ETX>>

[1]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[2]  AUT. SORfe,et al.  Computational Structure of the N-body Problem , 1989 .

[3]  Pangfeng Liu,et al.  Abstractions for parallel N-body simulations , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[4]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[5]  K. Esselink The order of Appel's algorithm , 1992 .

[6]  Michael S. Warren,et al.  Astrophysical N-body simulations using hierarchical tree data structures , 1992, Proceedings Supercomputing '92.

[7]  Feng Zhao,et al.  The Parallel Multipole Method on the Connection Machine , 1991, SIAM J. Sci. Comput..

[8]  Srinivas Aluru,et al.  Distribution-independent hierarchical N-body methods , 1995 .

[9]  Junichiro Makino,et al.  Vectorization of a treecode , 1990 .

[10]  L. Hernquist,et al.  Vectorization of tree traversals , 1990 .

[11]  Michael S. Warren,et al.  A parallel hashed oct-tree N-body algorithm , 1993, Supercomputing '93. Proceedings.

[12]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[13]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[14]  Joshua E. Barnes,et al.  A modified tree code: don't laugh; it runs , 1990 .

[15]  Jaswinder Pal Singh,et al.  Hierarchical n-body methods and their implications for multiprocessors , 1993 .

[16]  Klaas Esseling The Order of Appel's Algorithm , 1992, Inf. Process. Lett..

[17]  John K. Salmon,et al.  Parallel hierarchical N-body methods , 1992 .

[18]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..

[19]  Anoop Gupta,et al.  Load Balancing and Data locality in Adaptive Hierarchical N-Body Methods: Barnes-Hut, Fast Multipole, and Rasiosity , 1995, J. Parallel Distributed Comput..

[20]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.