Possible Appearance of Superconductivity on Si(001) Surface

Inspired by Kondo et al. 's experiment, [Kondo] which reports that the p (2×1) symmetric dimer phase is stable at low temperatures on a Si(001) surface, a two-leg ladder Hubbard model with three Fermi surfaces, which is an effective model of the Si(001) surface, is studied theoretically. The fluctuation-exchange (FLEX) method is adopted to take the effects of on-site Coulomb interactions into account. The electronic structures are discussed and an unconventional even-parity superconductivity through large antiferromagnetic spin fluctuations is found for a wide range of doping. Other possible electronic states with large superconducting fluctuations are also discussed.

[1]  A. Continenza,et al.  Self-energy corrections in VO 2 within a model GW scheme , 1999 .

[2]  E. Dagotto Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity , 1999, cond-mat/9908250.

[3]  R. Kondo,et al.  Structure and properties of all organic conductor (BEDT-TSeF)2(X1X2TCNQ) (X1,X2=Cl,Br) , 1999 .

[4]  H. Kontani,et al.  Hall effect and resistivity in high-T c superconductors: The conserving approximation , 1999, cond-mat/9905427.

[5]  H. Kino,et al.  Effects of Spin Fluctuations in Quasi-One-Dimensional Organic Superconductors , 1999, cond-mat/9905054.

[6]  Hideaki Takahashi Susceptibility and Effective Interaction in the Dilute Two Dimensional Hubbard Model , 1999 .

[7]  S. Erwin,et al.  STRONGLY CORRELATED ELECTRONS ON A SILICON SURFACE : THEORY OF A MOTT INSULATOR , 1998, cond-mat/9812061.

[8]  H. Kino,et al.  Phase diagram of superconductivity on the anisotropic triangular lattice Hubbard model : An effective model of κ-(BEDT-TTF) salts , 1998, cond-mat/9807147.

[9]  H. Kontani,et al.  Electronic Properties of the Trellis-Lattice Hubbard Model: Pseudogap and Superconductivity , 1998 .

[10]  T. Takimoto,et al.  Theory of Spin Fluctuation-Induced Superconductivity Based on a d- p Model , 1997, cond-mat/9806009.

[11]  Dahm,et al.  Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors. , 1995, Physical review. B, Condensed matter.

[12]  K. Terakura,et al.  Structural phase transition on Si(001) and Ge(001) surfaces , 1995 .

[13]  Pines,et al.  YBa2Cu3O7: A nearly antiferromagnetic Fermi liquid. , 1993, Physical review. B, Condensed matter.

[14]  White,et al.  Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. , 1989, Physical review letters.

[15]  Loh,et al.  d -wave pairing near a spin-density-wave instability. , 1986, Physical review. B, Condensed matter.

[16]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[17]  T. Tsuzuki,et al.  Fluctuation of the Order Parameter and Hall Effect , 1971 .

[18]  K. Maki The Critical Fluctuation of the Order Parameter in Type-II Superconductors , 1968 .

[19]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .