Optimization modeling languages

AbstractThe access to advanced optimization software needs more and more sophisticated modeling tools.Optimization modeling languages are tools that facilitate the decision making process based on theoptimization paradigm. Among the variety of modeling tools, the algebraic modeling languages seemto be the leaders. The optimization modeling tools evolve together with the progress in optimiza-tion techniques. Links with solvers are crucial, especially, in nonlinear optimization. New classes ofproblems such as complementarity, stochastic programming, combinatorial optimization or global op-timization problems can be modeled with these tools. In a wider context, interesting developments ofmodeling tools also emerge from other elds such as chemical engineering or computer science. Indeed,approaches based on object-oriented modeling or constraint programming influence the evolution ofoptimization modeling languages too. Optimization modeling tools evolve toward fully integrated mod-eling management systems opening the access to databases, spreadsheets and graphical user interfaces.

[1]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[2]  J. Meeraus A. Bisschop,et al.  ON THE DEVELOPMENT OF A GENERAL ALGEBRAIC MODELING SYSTEM IN A STRATEGIC PLANNING ENVIRONMENT , 1982 .

[3]  F. Ramsey,et al.  THE MATHEMATICAL THEORY OF SAVING , 1928 .

[4]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[5]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[6]  Peter Piela Ascend: an object-oriented computer environment for modeling and analysis , 1989 .

[7]  Robert Fourer,et al.  Expressing Special Structures in an Algebraic Modeling Language for Mathematical Programming , 1995, INFORMS J. Comput..

[8]  A. Drud Arne Meeraus A. Brooke High level modeling systems and nonlinear programming , 1984 .

[9]  James R. Evans,et al.  Blending OR/MS, Judgment, and GIS: Restructuring P&G's Supply Chain , 1997 .

[10]  A. M. Ireland,et al.  Scenario formulation in an algebraic modelling language , 1995, Ann. Oper. Res..

[11]  Christopher Vyn Jones,et al.  Visualization and Optimization , 1997 .

[12]  Robert Fourer,et al.  Modeling languages versus matrix generators for linear programming , 1983, TOMS.

[13]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[14]  K. I. M. McKinnon,et al.  The Recursive Definition of Stochastic Linear Programming Problems within an Algebraic Modeling Language , 2001, Ann. Oper. Res..

[15]  Arthur M. Geoffrion,et al.  An Introduction to Structured Modeling , 1987 .

[16]  T. Rutherford Extension of GAMS for complementarity problems arising in applied economic analysis , 1995 .

[17]  A. Griewank,et al.  Automatic differentiation of algorithms : theory, implementation, and application , 1994 .

[18]  Leon S. Lasdon,et al.  Design and Use of the Microsoft Excel Solver , 1998, Interfaces.

[19]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[20]  Harvey J. Greenberg,et al.  A Functional Description of ANALYZE: A Computer-Assisted Analysis System for Linear Programming Models , 1983, TOMS.

[21]  M. J. Maher,et al.  Model Building in Mathematical Programming , 1978 .