Rich Bifurcation Structure in a Two-Patch Vaccination Model

We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible--infected--vaccinated--susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifur...

[1]  M. Mrozek Leray functor and cohomological Conley index for discrete dynamical systems , 1990 .

[2]  Fred Brauer,et al.  Backward bifurcations in simple vaccination models , 2004 .

[3]  H. Hethcote Qualitative analyses of communicable disease models , 1976 .

[4]  Daniel Wilczak,et al.  Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof , 2005, SIAM J. Appl. Dyn. Syst..

[5]  A. Szymczak The Conley index for discrete semidynamical systems , 1995 .

[6]  Abba B. Gumel,et al.  Causes of backward bifurcations in some epidemiological models , 2012 .

[7]  Xiao-Qiang Zhao,et al.  An epidemic model in a patchy environment. , 2004, Mathematical biosciences.

[8]  P. Pilarczyk COMPUTER ASSISTED METHOD FOR PROVING EXISTENCE OF PERIODIC ORBITS , 1999 .

[9]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[10]  Wendi Wang,et al.  Threshold of disease transmission in a patch environment , 2003 .

[11]  J. Velasco-Hernández,et al.  A simple vaccination model with multiple endemic states. , 2000, Mathematical biosciences.

[12]  Fred Brauer,et al.  Backward bifurcations in simple vaccination/treatment models , 2011 .

[13]  Pawel Pilarczyk,et al.  Parallelization Method for a Continuous Property , 2010, Found. Comput. Math..

[14]  Konstantin Mischaikow,et al.  A study of rigorous ODE integrators for multi-scale set-oriented computations , 2016 .

[15]  Shin'ichi Oishi Numerical Verification Method of Existence of Connecting Orbits for Continuous Dynamical Systems , 1998, J. Univers. Comput. Sci..

[16]  Frank Diederich,et al.  Mathematical Epidemiology Of Infectious Diseases Model Building Analysis And Interpretation , 2016 .

[17]  Carlos Castillo-Chavez,et al.  Backwards bifurcations and catastrophe in simple models of fatal diseases , 1998, Journal of mathematical biology.

[18]  D. Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three-Body Problem – A Computer Assisted Proof , 2002, math/0201278.

[19]  P. Pilarczyk,et al.  Global dynamics in a stage-structured discrete-time population model with harvesting. , 2012, Journal of theoretical biology.

[20]  Horst R. Thieme,et al.  Asymptotically Autonomous Differential Equations in the Plane , 1993 .

[21]  P. Pilarczyk,et al.  Excision-preserving cubical approach to the algorithmic computation of the discrete Conley index , 2008 .

[22]  Carlos Castillo-Chavez,et al.  Asymptotically Autonomous Epidemic Models , 1994 .

[23]  Konstantin Mischaikow,et al.  Inducing a map on homology from a correspondence , 2014 .

[24]  K. Hadeler,et al.  A core group model for disease transmission. , 1995, Mathematical biosciences.

[25]  B. Carreras,et al.  A dynamical model for plasma confinement transitions , 2012 .

[26]  Graham F. Medley,et al.  Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control , 2001, Nature Medicine.

[27]  S. Lefschetz Contributions to the theory of nonlinear oscillations , 1950 .

[28]  O Diekmann,et al.  The construction of next-generation matrices for compartmental epidemic models , 2010, Journal of The Royal Society Interface.

[29]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[30]  J. Arino,et al.  A multi-city epidemic model , 2003 .

[31]  L. Markus,et al.  II. ASYMPTOTICALLY AUTONOMOUS DIFFERENTIAL SYSTEMS , 1956 .

[32]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[33]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[34]  P van den Driessche,et al.  Backward bifurcation in epidemic control. , 1997, Mathematical biosciences.

[35]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[36]  M. Gameiro,et al.  Combinatorial-topological framework for the analysis of global dynamics. , 2012, Chaos.

[37]  Konstantin Mischaikow,et al.  Graph Approach to the Computation of the Homology of Continuous Maps , 2005, Found. Comput. Math..

[38]  M. Mrozek The Conley Index on Compact Anr’s Is of Finite Type , 1990 .

[39]  Julien Arino,et al.  Diseases in metapopulations , 2009 .

[40]  C. Kribs-Zaleta Center manifolds and normal forms in epidemic models , 2002 .

[41]  Konstantin Mischaikow,et al.  A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..

[42]  Julien Arino,et al.  The Basic Reproduction Number in a Multi-city Compartmental Epidemic Model , 2003, POSTA.

[43]  Stefano Luzzatto,et al.  Finite Resolution Dynamics , 2009, Found. Comput. Math..