A Closed Formula for the Riemann Normal Coordinate Expansion
暂无分享,去创建一个
[1] I. Khriplovich,et al. Normal coordinates along a geodesic , 1983 .
[2] V. K. Patodi,et al. On the heat equation and the index theorem , 1973 .
[3] M. Shifman. Wilson Loop in Vacuum Fields , 1980 .
[4] P. Amsterdamski,et al. b 8 'Hamidew' coefficient for a scalar field , 1989 .
[5] D. Perret-Gallix,et al. New computing techniques in physics research IV : proceedings of the Fourth international Workshop on Software Engineering, Artificial Intelligence, and Expert Systems in High Energy and Nuclear Physics, April 3-8, 1995, Pisa, Italy , 1995 .
[6] C. Schubert,et al. The Higher Derivative Expansion of the Effective Action by the String Inspired Method, II , 1997, hep-th/9707189.
[7] Julian Schwinger,et al. On gauge invariance and vacuum polarization , 1951 .
[8] A. V. D. Ven,et al. Renormalization of generalized two-dimensional nonlinear σ models , 1986 .
[9] A. V. D. Ven. Index-free heat kernel coefficients , 1997, hep-th/9708152.
[10] On the Calculation of Effective Actions by String Methods , 1993, hep-th/9309055.
[11] M Lüscher,et al. Dimensional regularisation in the presence of large background fields , 1982 .
[12] G. Herglotz. Über die Bestimmung eines Linienelementes in Normalkoordinaten aus dem Riemannschen Krümmungstensor , 1925 .
[13] I. Holopainen. Riemannian Geometry , 1927, Nature.
[14] B. M. Fulk. MATH , 1992 .
[15] D. Friedan,et al. Nonlinear models in 2 + ε dimensions☆ , 1985 .
[16] Trace anomalies from quantum mechanics , 1992, hep-th/9208059.
[17] D. Freedman,et al. The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model , 1981 .
[18] Ivan G. Avramidi,et al. The Covariant Technique for Calculation of One Loop Effective Action , 1991 .