Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel.

Ca2+-dependent inactivation (CDI) and facilitation (CDF) of the Ca(v)1.2 Ca2+ channel require calmodulin binding to a putative IQ motif in the carboxy-terminal tail of the pore-forming subunit. We present the 1.45 A crystal structure of Ca2+-calmodulin bound to a 21 residue peptide corresponding to the IQ domain of Ca(v)1.2. This structure shows that parallel binding of calmodulin to the IQ domain is governed by hydrophobic interactions. Mutations of residues I1672 and Q1673 in the peptide to alanines, which abolish CDI but not CDF in the channel, do not greatly alter the structure. Both lobes of Ca2+-saturated CaM bind to the IQ peptide but isoleucine 1672, thought to form an intramolecular interaction that drives CDI, is buried. These findings suggest that this structure could represent the conformation that calmodulin assumes in CDF.

[1]  F A Quiocho,et al.  Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. , 1993, Science.

[2]  W. Chazin,et al.  Target selectivity in EF-hand calcium binding proteins. , 2004, Biochimica et biophysica acta.

[3]  H. Kahr,et al.  Ca2+ sensors of L‐type Ca2+ channel , 2000, FEBS letters.

[4]  Diane Lipscombe,et al.  L-type calcium channels: the low down. , 2004, Journal of neurophysiology.

[5]  F. Quiocho,et al.  X-ray analysis reveals conformational adaptation of the linker in functional calmodulin mutants , 1995, Nature Structural Biology.

[6]  S. Sencer,et al.  Calmodulin modulation of proteins involved in excitation-contraction coupling. , 2002, Frontiers in bioscience : a journal and virtual library.

[7]  T. Snutch,et al.  Voltage‐dependent facilitation of a neuronal alpha 1C L‐type calcium channel. , 1994, The EMBO journal.

[8]  D. T. Yue,et al.  Functional Stoichiometry and Local Enrichment of Calmodulin Interacting with Ca2+ Channels , 2004, Science.

[9]  Masaya Orita,et al.  A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase , 1999, Nature Structural Biology.

[10]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[11]  A. Bohm,et al.  Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin , 2002, Nature.

[12]  Henry M Colecraft,et al.  Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Adelman,et al.  Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin , 2001, Nature.

[14]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[15]  F A Quiocho,et al.  Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. , 1992, Science.

[16]  F. Lehmann-Horn,et al.  Voltage-gated ion channels and hereditary disease. , 1999, Physiological reviews.

[17]  Mark E. Anderson,et al.  A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening. , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  R. Tsien,et al.  Ca2+-sensitive Inactivation and Facilitation of L-type Ca2+ Channels Both Depend on Specific Amino Acid Residues in a Consensus Calmodulin-binding Motif in theα1C subunit* , 2000, The Journal of Biological Chemistry.

[19]  J. Adelman,et al.  Erratum: Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels (Neuron (March 1999)) , 1999 .

[20]  James Kim,et al.  Identification of the Components Controlling Inactivation of Voltage-Gated Ca2+ Channels , 2004, Neuron.

[21]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[22]  N. Davidson,et al.  Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes. , 1986, Science.

[23]  S. Hamilton,et al.  Regulation of RYR1 activity by Ca(2+) and calmodulin. , 2000, Biochemistry.

[24]  S. Hamilton,et al.  Calmodulin interactions with IQ peptides from voltage-dependent calcium channels. , 2005, American journal of physiology. Cell physiology.

[25]  D. T. Yue,et al.  FRET Two-Hybrid Mapping Reveals Function and Location of L-Type Ca2+ Channel CaM Preassociation , 2003, Neuron.

[26]  W. Anderson,et al.  Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. , 1982, Biochemical and biophysical research communications.

[27]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[28]  D. T. Yue,et al.  Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. , 1994, Neuron.

[29]  Andy Hudmon,et al.  Erratum: Molecular basis of calmodulin tethering and Ca 2+-dependent inactivation of L-type Ca2+ channels (Journal of Biological Chemistry (2001) 276 (30794-30802)) , 2001 .

[30]  E. Lakatta,et al.  Differential Role of the α1C Subunit Tails in Regulation of the Cav1.2 Channel by Membrane Potential, β Subunits, and Ca2+ Ions* , 2005, Journal of Biological Chemistry.

[31]  J. Sack,et al.  CHAIN — A crystallographic modeling program , 1988 .

[32]  M. Nowycky,et al.  Direct measurement of exocytosis and calcium currents in single vertebrate nerve terminals , 1990, Nature.

[33]  William H. Thiel,et al.  A dynamic α‐β inter‐subunit agonist signaling complex is a novel feedback mechanism for regulating L‐type Ca2+ channel opening , 2005 .

[34]  Charles E. Bugg,et al.  Three-dimensional structure of calmodulin , 1985, Nature.

[35]  David T. Yue,et al.  Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels , 1994, Neuron.

[36]  S. Hamilton,et al.  Apocalmodulin and Ca2+ calmodulin-binding sites on the CaV1.2 channel. , 2003, Biophysical journal.

[37]  Andy Hudmon,et al.  Molecular Basis of Calmodulin Tethering and Ca2+-dependent Inactivation of L-type Ca2+ Channels* , 2001, The Journal of Biological Chemistry.

[38]  I. Serysheva,et al.  Determinants for Calmodulin Binding on Voltage-dependent Ca2+ Channels* , 2000, The Journal of Biological Chemistry.

[39]  F. Quiocho,et al.  A closed compact structure of native Ca(2+)-calmodulin. , 2003, Structure.