Adaptive robust stabilization of dynamic nonholonomic chained systems

In this paper, the stabilization problem is investigated for dynamic nonholonomic systems with unknown inertia parameters and disturbances. Firstly, the nonholonomic kinematic subsystem is transformed into a skew-symmetric form and the properties of the overall systems are discussed. Then, a robust adaptive controller is presented where adaptive control technique is used to compensate for the parametric uncertainties and sliding mode control is to suppress the bounded disturbances. The controller guarantees the outputs of the dynamic subsystem to track some bounded auxiliary signals which subsequently drive the kinematic subsystem to the origin. Simulation study on the control of a unicycle wheeled mobile robot shows the effectiveness of the proposed approach.

[1]  Ole Jakob Sørdalen,et al.  Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[2]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[3]  Linda Bushnell,et al.  Stabilization of multiple input chained form control systems , 1995 .

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  Shuzhi Sam Ge,et al.  ROBUST STABILIZATION OF DYNAMIC NONHOLONOMIC CHAINED SYSTEMS , 2000 .

[6]  Shuzhi Sam Ge,et al.  Adaptive robust stabilization of dynamic nonholonomic chained systems , 2001, J. Field Robotics.

[7]  W. Huo,et al.  Adaptive stabilization of uncertain dynamic non-holonomic systems , 1999 .

[8]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[9]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[10]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[11]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[12]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[13]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[14]  C. Su Adaptive sliding mode control of nonlinear robotic systems with time-varying parameters , 1994 .

[15]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[16]  Masayoshi Tomizuka,et al.  Smooth Robust Adaptive Sliding Mode Control of Manipulators With Guaranteed Transient Performance , 1996 .

[17]  Richard M. Murray,et al.  Steering nonholonomic systems in chained form , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[19]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[20]  R. W. Brockett,et al.  Asymptotic stability and feed back stabilization , 1983 .

[21]  A. Astolfi On the stabilization of nonholonomic systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[22]  A. Isidori Nonlinear Control Systems , 1985 .

[23]  Sergey V. Drakunov,et al.  Stabilization and tracking in the nonholonomic integrator via sliding modes , 1996 .

[24]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[25]  Chun-Yi Su,et al.  Robust motion/force control of mechanical systems with classical nonholonomic constraints , 1994, IEEE Trans. Autom. Control..

[26]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[27]  V. I. Utkin,et al.  Stabilization of non-holonomic mobile robots using Lyapunov functions for navigation and sliding mode control , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[28]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..