Multi channel far field speaker verification using teacher student deep neural networks

Far field input utterance is one of the major causes of performance degradation of speaker verification systems. In this study, we used teacher student learning framework to compensate for the performance degradation caused by far field utterances. Teacher student learning refers to training the student deep neural network in possible performance degradation condition using the teacher deep neural network trained without such condition. In this study, we use the teacher network trained with near distance utterances to train the student network with far distance utterances. However, through experiments, it was found that performance of near distance utterances were deteriorated. To avoid such phenomenon, we proposed techniques that use trained teacher network as initialization of student network and training the student network using both near and far field utterances. Experiments were conducted using deep neural networks that input raw waveforms of 4-channel utterances recorded in both near and far distance. Results show the equal error rate of near and far-field utterances respectively, 2.55 % / 2.8 % without teacher student learning, 9.75 % / 1.8 % for conventional teacher student learning, and 2.5 % / 2.7 % with proposed techniques.