Hybrid synchronization of coupled fractional-order complex networks

Abstract This paper investigates the hybrid synchronization problem of two coupled complex networks with fractional-order dynamical nodes. Based on the fractional-order Lyapunov stability theorem, some sufficient conditions are derived to realize the hybrid synchronization of two coupled fractional-order networks. Under suitable condition, two coupled networks can reach the hybrid synchronization, i.e., the outer synchronization between the drive and response networks, and the inner synchronization in each networks. Numerical simulations demonstrate the effectiveness and feasility of the proposed synchronization protocol.

[1]  E. Soczkiewicz,et al.  Application of Fractional Calculus in the Theory of Viscoelasticity , 2002 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[4]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[5]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[6]  Huaguang Zhang,et al.  Robust Global Exponential Synchronization of Uncertain Chaotic Delayed Neural Networks via Dual-Stage Impulsive Control , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[8]  Huaguang Zhang,et al.  Controlling Chaos: Suppression, Synchronization and Chaotification , 2009 .

[9]  Yi Chai,et al.  Adaptive pinning synchronization in fractional-order complex dynamical networks , 2012 .

[10]  Hongtao Lu,et al.  Outer synchronization of uncertain general complex delayed networks with adaptive coupling , 2012, Neurocomputing.

[11]  Sha Wang,et al.  Hybrid projective synchronization of chaotic fractional order systems with different dimensions , 2010 .

[12]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[13]  Hongtao Lu,et al.  Hybrid synchronization of the general delayed and non-delayed complex dynamical networks via pinning control , 2012, Neurocomputing.

[14]  Jun Jiang,et al.  Hybrid Projective Synchronization of Fractional-Order Chaotic Systems with Time Delay , 2013 .

[15]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[16]  Jürgen Kurths,et al.  Synchronization between two coupled complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[18]  S. Strogatz Exploring complex networks , 2001, Nature.

[19]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[20]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[21]  Jun Jiang,et al.  Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters , 2014, Commun. Nonlinear Sci. Numer. Simul..

[22]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[23]  Tianping Chen,et al.  New approach to synchronization analysis of linearly coupled ordinary differential systems , 2006 .

[24]  Gangquan Si,et al.  Parameter estimation and topology identification of uncertain fractional order complex networks , 2012 .

[25]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[26]  Derong Liu,et al.  Adaptive Dynamic Programming for Control: Algorithms and Stability , 2012 .

[27]  Wu Xiang-Jun,et al.  Outer synchronization between two different fractional-order general complex dynamical networks , 2010 .

[28]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[29]  Oliver Heaviside,et al.  Electromagnetic theory : Including an account of Heaviside's unpublished notes for a fourth volume and with a foreword by Edmund Whittaker , 1971 .

[30]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[31]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[32]  Zhong Chen,et al.  An intriguing hybrid synchronization phenomenon of two coupled complex networks , 2010, Appl. Math. Comput..

[33]  Jinde Cao,et al.  Synchronization in an array of linearly coupled networks with time-varying delay ☆ , 2006 .

[34]  Liang Chen,et al.  Adaptive synchronization between two complex networks with nonidentical topological structures , 2008 .

[35]  Tiedong Ma,et al.  Cluster synchronization in fractional-order complex dynamical networks , 2012 .