LCD Codes and Self-orthogonal Codes in Finite Dihedral Group Algebras

Let $${\mathbb{F}_q}$$ be a finite field with order q and D2n be the dihedral group with 2n elements, and gcd(q, 2n) = 1. In this article, the authors give precise descriptions and enumerations of linear complementary dual (LCD) codes and self-orthogonal codes in the finite dihedral group algebras $${\mathbb{F}_q}[{D_{2n}}]$$ . Some numerical examples are also presented to illustrate the main results.

[1]  Yonglin Cao,et al.  Left dihedral codes over Galois rings GR(p2, m) , 2018, Discret. Math..

[2]  James L. Massey Reversible Codes , 1964, Inf. Control..

[3]  Fabio Enrique Brochero Martínez,et al.  Structure of finite dihedral group algebra , 2014, Finite Fields Their Appl..

[4]  César Polcino Milies,et al.  On Cyclic and Abelian Codes , 2013, IEEE Trans. Inf. Theory.

[5]  Patanee Udomkavanich,et al.  Characterization and enumeration of complementary dual abelian codes , 2017, ArXiv.

[6]  Javier de la Cruz,et al.  On group codes with complementary duals , 2018, Des. Codes Cryptogr..

[7]  C. Milies,et al.  An introduction to group rings , 2002 .

[8]  Patrick Solé,et al.  Hermitian Self-Dual Abelian Codes , 2014, IEEE Transactions on Information Theory.

[9]  C. Carlet,et al.  Linear Codes Over $\mathbb F_q$ Are Equivalent to LCD Codes for $q>3$ , 2018, IEEE Transactions on Information Theory.

[10]  Yonglin Cao,et al.  Concatenated structure of left dihedral codes , 2016, Finite Fields Their Appl..

[11]  Sihem Mesnager,et al.  Complementary Dual Algebraic Geometry Codes , 2016, IEEE Transactions on Information Theory.

[12]  Patanee Udomkavanich,et al.  Self-Dual Abelian Codes in Some Nonprincipal Ideal Group Algebras , 2016 .

[13]  Sihem Mesnager,et al.  Euclidean and Hermitian LCD MDS codes , 2017, Des. Codes Cryptogr..

[14]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[15]  D. Passman,et al.  The algebraic structure of group rings , 1977 .

[16]  Raul Antonio Ferraz,et al.  Idempotents in group algebras and minimal abelian codes , 2007, Finite Fields Their Appl..

[17]  Hongwei Liu,et al.  Abelian Codes in Principal Ideal Group Algebras , 2013, IEEE Transactions on Information Theory.

[18]  F. E. Brochero Martínez,et al.  Explicit idempotents of finite group algebras , 2014, Finite Fields Their Appl..

[19]  James H. Griesmer,et al.  A Bound for Error-Correcting Codes , 1960, IBM J. Res. Dev..