Graph spectra as a systematic tool in computational biology

We present the spectrum of the (normalized) graph Laplacian as a systematic tool for the investigation of networks, and we describe basic properties of eigenvalues and eigenfunctions. Processes of graph formation like motif joining or duplication leave characteristic traces in the spectrum. This can suggest hypotheses about the evolution of a graph representing biological data.

[1]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[2]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[3]  Peter F. Stadler,et al.  Laplacian Eigenvectors of Graphs , 2007 .

[4]  G. Sabidussi,et al.  Graph symmetry : algebraic methods and applications , 1997 .

[5]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[6]  Anirban Banerjee,et al.  Laplacian Spectrum and Protein-Protein Interaction Networks , 2007, 0705.3373.

[7]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[8]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[9]  F. Atay,et al.  Network synchronization: Spectral versus statistical properties , 2006, 0706.3069.

[10]  Paul Erdös,et al.  On random graphs, I , 1959 .

[11]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[12]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[13]  Minping Qian,et al.  Networks: From Biology to Theory , 2007 .

[14]  W R Engels,et al.  Gene duplication. , 1981, Science.

[15]  Ping Zhu,et al.  A Study of Graph Spectra for Comparing Graphs , 2005, BMVC.

[16]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[17]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[18]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[19]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[20]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[21]  Anirban Banerjee,et al.  On the spectrum of the normalized graph Laplacian , 2007, 0705.3772.

[22]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[23]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[24]  J. Leydold,et al.  Discrete Nodal Domain Theorems , 2000, math/0009120.

[25]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[26]  A. Wagner,et al.  Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Alexander S Mikhailov,et al.  Evolutionary reconstruction of networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Jürgen Jost,et al.  Synchronization of networks with prescribed degree distributions , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Jürgen Jost,et al.  Delays, connection topology, and synchronization of coupled chaotic maps. , 2004, Physical review letters.

[30]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[31]  J. Jost,et al.  Spectral properties and synchronization in coupled map lattices. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[33]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[34]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[35]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.