Constrained variational approach for dynamic analysis of elastic contact problems

[1]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[2]  C. D. Bailey Hamilton, Ritz, and Elastodynamics , 1976 .

[3]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[4]  J. Z. Zhu,et al.  The finite element method , 1977 .

[5]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[6]  D. Osmont Computation of the dynamic response of structures with unilateral constraints (contact)—comparison with experimental results , 1982 .

[7]  An Approximate Hybrid Type of Virtual Work Principle for Two Elastoimpact Contact Bodies , 1983 .

[8]  J. Oden,et al.  A numerical analysis of a class of problems in elastodynamics with friction , 1983 .

[9]  B. Kwak,et al.  A computational method for elasto-plastic contact problems , 1984 .

[10]  C. D. Bailey,et al.  Harmonic motion of nonconservative, forced, damped systems subjected to nonpotential follower forces , 1984 .

[11]  Anil Chaudhary,et al.  A solution method for static and dynamic analysis of three-dimensional contact problems with friction , 1986 .

[12]  O. Agrawal,et al.  A novel, computationally efficient, approach for Hamilton's law of varying action , 1987 .

[13]  Byung Man Kwak,et al.  FORMULATION AND IMPLEMENTATION OF BEAM CONTACT PROBLEMS UNDER LARGE DISPLACEMENT BY A MATHEMATICAL-PROGRAMMING , 1989 .

[14]  Byung Man Kwak,et al.  Numerical implementation of three-dimensional frictional contact by a linear complementarity problem , 1990 .

[15]  B. Kwak Complementarity problem formulation of three-dimensional frictional contact , 1991 .