Eosin Y as a Direct Hydrogen-Atom Transfer Photocatalyst for the Functionalization of C-H Bonds.

Eosin Y, a well-known economical alternative to metal catalysts in visible-light-driven single-electron transfer-based organic transformations, can behave as an effective direct hydrogen-atom transfer catalyst for C-H activation. Using the alkylation of C-H bonds with electron-deficient alkenes as a model study revealed an extremely broad substrate scope, enabling easy access to a variety of important synthons. This eosin Y-based photocatalytic hydrogen-atom transfer strategy is promising for diverse functionalization of a wide range of native C-H bonds in a green and sustainable manner.

[1]  Junyi Liu,et al.  Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals. , 2017, Angewandte Chemie.

[2]  Davide Ravelli,et al.  Vinylpyridines as Building Blocks for the Photocatalyzed Synthesis of Alkylpyridines. , 2017, Chemistry.

[3]  Jie Wu,et al.  Metal-free direct alkylation of unfunctionalized allylic/benzylic sp3 C–H bonds via photoredox induced radical cation deprotonation† †Electronic supplementary information (ESI) available: Experimental procedures, characterization data and NMR spectra of all new compounds; ORTEP drawing of compound 4 , 2017, Chemical science.

[4]  Ming‐Yu Ngai,et al.  β-Selective Reductive Coupling of Alkenylpyridines with Aldehydes and Imines via Synergistic Lewis Acid/Photoredox Catalysis. , 2017, Journal of the American Chemical Society.

[5]  Davide Ravelli,et al.  Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis , 2017, European journal of organic chemistry.

[6]  Junyi Liu,et al.  Mild, Redox‐Neutral Formylation of Aryl Chlorides via Photocatalytic Generation of Chlorine Radicals , 2017 .

[7]  F. Glorius,et al.  Visible-Light-Promoted Activation of Unactivated C(sp3)-H Bonds and Their Selective Trifluoromethylthiolation. , 2016, Journal of the American Chemical Society.

[8]  David C. Miller,et al.  Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer , 2016, Nature.

[9]  T. Rovis,et al.  Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds , 2016, Nature.

[10]  O. Poizat,et al.  Unraveling the Key Features of the Reactive State of Decatungstate Anion in Hydrogen Atom Transfer (HAT) Photocatalysis , 2016 .

[11]  M. Májek,et al.  Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. , 2016, Accounts of chemical research.

[12]  T. Murafuji,et al.  Alkylation of Nonacidic C(sp3)-H Bonds by Photoinduced Catalytic Michael-Type Radical Addition. , 2016, Organic letters.

[13]  Davide Ravelli,et al.  Decatungstate Anion for Photocatalyzed "Window Ledge" Reactions. , 2016, Accounts of chemical research.

[14]  T. Murafuji,et al.  Photo-induced Substitutive Introduction of the Aldoxime Functional Group to Carbon Chains: A Formal Formylation of Non-Acidic C(sp(3) )-H Bonds. , 2016, Angewandte Chemie.

[15]  E. J. Sorensen,et al.  The Uranyl Cation as a Visible-Light Photocatalyst for C(sp(3) )-H Fluorination. , 2016, Angewandte Chemie.

[16]  David A. Nicewicz,et al.  Organic Photoredox Catalysis. , 2016, Chemical reviews.

[17]  D. MacMillan,et al.  Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles , 2016, Science.

[18]  Yusuke Masuda,et al.  A Light/Ketone/Copper System for Carboxylation of Allylic C-H Bonds of Alkenes with CO2. , 2016, Chemistry.

[19]  M. Fagnoni,et al.  Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals , 2016, Nature.

[20]  Maurizio Fagnoni,et al.  Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates. , 2016, Chemical reviews.

[21]  E. J. Sorensen,et al.  Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis , 2015, Nature Communications.

[22]  Megan A. Cismesia,et al.  Characterizing chain processes in visible light photoredox catalysis , 2015, Chemical science.

[23]  T. Murafuji,et al.  Photoinduced Oxidation of Secondary Alcohols Using 4-Benzoylpyridine as an Oxidant. , 2015, Organic letters.

[24]  M. Inoue,et al.  Enantioselective radical alkynylation of C(sp(3) )-H bonds using sulfoximine as a traceless chiral auxiliary. , 2015, Chemistry, an Asian journal.

[25]  M. Inoue,et al.  Photochemically induced radical alkenylation of C(sp3)–H bonds , 2014 .

[26]  Choon‐Hong Tan,et al.  Selective fluorination of alkyl C-H bonds via photocatalysis. , 2014, Chemical communications.

[27]  Burkhard König,et al.  Synthetic applications of eosin Y in photoredox catalysis. , 2014, Chemical communications.

[28]  M. Májek,et al.  On the mechanism of photocatalytic reactions with eosin Y , 2014, Beilstein journal of organic chemistry.

[29]  Chuo Chen,et al.  Visible light-promoted metal-free C-H activation: diarylketone-catalyzed selective benzylic mono- and difluorination. , 2013, Journal of the American Chemical Society.

[30]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[31]  W. Xiao,et al.  Photoredoxkatalyse mit sichtbarem Licht , 2012 .

[32]  Wen-Jing Xiao,et al.  Visible-light photoredox catalysis. , 2012, Angewandte Chemie.

[33]  John F. Hartwig,et al.  Zur Interpretation des kinetischen Isotopeneffekts bei der Funktionalisierung von C‐H‐Bindungen durch Übergangsmetallkomplexe , 2012 .

[34]  J. Hartwig,et al.  On the interpretation of deuterium kinetic isotope effects in C-H bond functionalizations by transition-metal complexes. , 2012, Angewandte Chemie.

[35]  M. Inoue,et al.  Photochemically induced radical transformation of C(sp3)-H bonds to C(sp3)-CN bonds. , 2011, Organic letters.

[36]  M. Toda,et al.  6,7-Dihydro-5H-cyclopenta[d]pyrazolo[1,5-a]pyrimidines and their derivatives as novel corticotropin-releasing factor 1 receptor antagonists. , 2011, Bioorganic & medicinal chemistry.

[37]  Corey R J Stephenson,et al.  Visible light photoredox catalysis: applications in organic synthesis. , 2011, Chemical Society reviews.

[38]  D. Dondi,et al.  Synthesis of γ-lactols, γ-lactones and 1,4-monoprotected succinaldehydes under moderately concentrated sunlight , 2009 .

[39]  Angelo Albini,et al.  Photocatalysis. A multi-faceted concept for green chemistry. , 2009, Chemical Society reviews.

[40]  Robert Merényi,et al.  The captodative effect , 1985 .