Physics Basis of a Fusion Development Facility Utilizing the Tokamak Approach

Abstract The objective of the Fusion Development Facility (FDF) under consideration is to carry forward advanced tokamak physics for optimization of fusion reactors and enable development of fusion’s energy applications. A concept of FDF based on the tokamak approach with conservative expressions of advanced physics and nonsuperconducting magnet technology is presented. It is envisioned to nominally provide 2 MW/m2 of neutron wall loading and operate continuously for up to 2 weeks as required for fusion nuclear component research and development. FDF will have tritium breeding capability with a goal of addressing the tritium self-sufficiency issue for fusion energy. A zero-dimensional system study using extrapolations of current physics and technology is used to optimize FDF for reasonable power consumption and moderate size. It projects a device that is between the DIII-D tokamak (major radius 1.8 m) [J. L. Luxon, Nucl. Fusion, Vol. 42, p. 614 (2002)] and the Joint European Torus (major radius 3 m) [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion, Vol. 25, p. 1011 (1985)] in size, with an aspect ratio A of 3.5 and a fusion gain Q of 2 to 5. Theory-based stability and transport modeling is used to complement the system study and to address physics issues related to specific design points. It is demonstrated that the FDF magnetohydrodynamic stability limits can be readily met with conservative stabilizing conducting wall placement. Transport analysis using a drift-wave-based model with an edge boundary condition consistent with the pedestal stability limit indicates that the FDF confinement requirement can also be readily satisfied. A surprising finding is that the toroidal Alfvén eigenmodes are stabilized by strong ion Landau damping. Analysis of vertical stability control indicates that the basis configuration with an elongation κx [approximately] 2.35 can be controlled using a power supply technology similar to that used in DIII-D. Peak heat fluxes to the divertor are somewhat lower than those of ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Control. Fusion, Vol. 44, p. 519 (2002)], but FDF will operate with a higher duty factor.

[1]  Robert V. Budny,et al.  Alpha particle-driven toroidal Alfvén eigenmodes in Tokamak Fusion Test Reactor deuterium–tritium plasmas: Theory and experiments , 1998 .

[2]  Shuichi Takamura,et al.  Chapter 4: Power and particle control , 2007 .

[3]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[4]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[5]  S. Jardin,et al.  Physics basis for the advanced tokamak fusion power plant, ARIES-AT , 2006 .

[6]  Ideal magnetohydrodynamic constraints on the pedestal temperature in tokamaks , 2003 .

[7]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[8]  T. Petrie,et al.  Loss of energetic beam ions during TAE instabilities , 1993 .

[9]  P. T. Bonoli,et al.  First results from Alcator‐C‐MOD* , 1994 .

[10]  G. A. Navratil,et al.  Stability and control of resistive wall modes in high beta, low rotation DIII-D plasmas , 2007, Nuclear Fusion.

[11]  M. Porkolab Survey of Lower Hybrid Experiments , 1984, IEEE Transactions on Plasma Science.

[12]  T. C. Luce,et al.  Development of burning plasma and advanced scenarios in the DIII-D tokamak , 2005 .

[13]  L. L. Lao,et al.  Advances in understanding quiescent H-mode plasmas in DIII-D , 2005 .

[14]  L. Lao,et al.  LETTER: Relation of vertical stability and aspect ratio in tokamaks , 1992 .

[15]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[16]  Chio-Zong Cheng,et al.  Kinetic extensions of magnetohydrodynamics for axisymmetric toroidal plasmas , 1992 .

[17]  F. Bianchi,et al.  IFMIF International Fusion Materials Irradiation Facility Conceptual Design Activity, Final Report , 1996 .

[18]  K. Burrell,et al.  Confinement of angular momentum in divertor and limiter discharges in the Doublet III tokamak , 1988 .

[19]  J. Kinsey,et al.  Access to sustained high-beta with internal transport barrier and negative central magnetic shear in DIII-D , 2006, Physics of Plasmas.

[20]  J. B. Lister,et al.  Control of the vertical instability in tokamaks , 1990 .

[21]  M. Chance,et al.  Nova: a nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas , 1987 .

[22]  L. L. Lao,et al.  LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK , 2000 .

[23]  H. Wilson,et al.  Numerical studies of edge localized instabilities in tokamaks , 2002 .

[24]  Peter A. Politzer,et al.  Feasibility Study of a Compact Ignition Tokamak Based upon GyroBohm Scaling Physics , 2003 .

[25]  Lao,et al.  Regime of very high confinement in the boronized DIII-D tokamak. , 1991, Physical review letters.

[26]  Patrick H. Diamond,et al.  Momentum and thermal transport in neutral‐beam‐heated tokamaks , 1988 .

[27]  W. Heidbrink Alpha particle physics in a tokamak burning plasma experiment , 2002 .

[28]  S. Suckewer,et al.  Toroidal plasma rotation in the Princeton Large Torus induced by neutral-beam injection , 1979 .

[29]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[30]  L. L. Lao,et al.  Progress toward fully noninductive, high beta conditions in DIII-D , 2005 .

[31]  E. Joffrin,et al.  Chapter 6: Steady state operation , 2007 .

[32]  E. D. Fredrickson,et al.  A component test facility based on the spherical tokamak , 2005 .

[33]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[34]  Marianne Hanson,et al.  The International Atomic Energy Agency , 2021, Nature.

[35]  Ian H. Hutchinson,et al.  Plasma inductance and stability metrics on Alcator C-Mod , 2008 .

[36]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .

[37]  Tait,et al.  Local measurements of correlated momentum and heat transport in the TFTR tokamak. , 1990, Physical review letters.

[38]  R. Budny,et al.  Study of thermonuclear Alfvén instabilities in next step burning plasma proposals , 2003 .

[39]  L. L. Lao,et al.  The ARIES-AT advanced tokamak, Advanced technology fusion power plant , 2006 .

[40]  E. Doyle,et al.  The physics of edge resonant magnetic perturbations in hot tokamak plasmasa) , 2006 .

[41]  M. J. Rennich,et al.  IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report , 1996 .

[42]  L. L. Lao,et al.  Advanced tokamak research in DIII-D , 2004 .

[43]  Yong-Seok Hwang,et al.  Design and construction of the KSTAR tokamak , 2001 .

[44]  K. Wong,et al.  A review of Alfvén eigenmode observations in toroidal plasmas , 1999 .

[45]  L. L. Lao,et al.  Physics of confinement improvement of plasmas with impurity injection in DIII-D , 2001 .

[46]  T. C. Luce,et al.  Application of dimensionless parameter scaling techniques to the design and interpretation of magnetic fusion experiments , 2008 .

[47]  Maxim Umansky,et al.  Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation , 2007 .

[48]  D. N. Hill,et al.  Multi-Machine Scaling of the Divertor Peak Heat Flux and Width for L-Mode and H-Mode Discharges , 1999 .

[49]  R J Bickerton,et al.  The Joint European Torus: installation, first results and prospects , 1985 .

[50]  C. M. Greenfield,et al.  Development, physics basis and performance projections for hybrid scenario operation in ITER on DIII-D , 2005 .

[51]  James A. Rome,et al.  NFREYA: a Monte Carlo beam deposition code for noncircular tokamak plasmas , 1979 .

[52]  G. Fu,et al.  Fast particle finite orbit width and Larmor radius effects on low-n toroidicity induced Alfvén eigenmode excitation , 1999 .

[53]  L. L. Lao,et al.  ELMs and constraints on the H-mode pedestal: peeling–ballooning stability calculation and comparison with experiment , 2004 .

[54]  Alfredo Portone,et al.  The stability margin of elongated plasmas , 2005 .

[55]  R. Nazikian,et al.  Coupling of global toroidal Alfvn eigenmodes and reversed shear Alfvn eigenmodes in DIII-D , 2007 .

[56]  P. J. Knight,et al.  Conceptual design of a component test facility based on the spherical tokamak , 2008 .

[57]  R. D. Stambaugh,et al.  Optimum equilibria for high performance, steady state tokamaks , 2004 .

[58]  FIRE, a next step option for magnetic fusion , 2002 .

[59]  Olivier Sauter,et al.  Stable equilibria for bootstrap-current driven low aspect ratio tokamaks , 1996 .

[60]  C. Giroud,et al.  Scaling of density peaking in JET H-modes and implications for ITER , 2006 .

[61]  L. L. Lao,et al.  Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII‐D high performance discharges , 1996 .

[62]  John D Galambos,et al.  Commercial tokamak reactor potential with advanced tokamak operation , 1995 .

[63]  R. Aymar,et al.  The ITER design , 2002 .