Analyzing rectangular tables by joint and constrained multidimensional scaling

Abstract This paper selectively discusses Multidimensional Scaling methods, addressing both theory and applications. Most of the discussion is focussed upon the analysis of rectangular tables. The term joint MDS is introduced for an analysis which gives a meaningful joint representation of the set of row and the set of column objects of such a table so that the dissimilarities either within sets or between sets are optimally approximated. From this perspective, it is possible to give an unified account of the relationships between classical Multidimensional Scaling, Principal Components analysis and Correspondence Analysis. By imposing constraints the general model can be structurally changed in a number of ways. For example, it can be made discrete; that is, in principle it subsumes subset models and quadratic assignment as special cases. It can also be made more flexible in the sense that external information may be used in order to tune the analysis to specific hypotheses. Finally, an elegant joint MDS model called Multidimensional Unfolding is discussed. As a technique, Unfolding unfortunately suffers from being extremely sensitive to ill-conditioned data. A new way of coping with this problem is indicated and an application is given in which the Bootstrap technique succesfully establishes the stability of the results.

[1]  P. Schönemann ON METRIC MULTIDIMENSIONAL UNFOLDING , 1970 .

[2]  K. Aschenbrenner,et al.  Efficient sets, decision heuristics, and single-peaked preferences , 1981 .

[3]  Ingwer Borg,et al.  Anwendungsorientierte multidimensionale Skalierung , 1981 .

[4]  Jan de Leeuw,et al.  Canonical analysis of categorical data , 1984 .

[5]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[6]  George S. Avrunin,et al.  Single-Peaked Functions and the Theory of Preference. , 1977 .

[7]  Gilbert Saporta,et al.  Correspondence analysis, with an extension towards nominal time series , 1983 .

[8]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[9]  N. Cliff,et al.  A generalization of the interpoint distance model , 1964 .

[10]  P. Arabie,et al.  Mapclus: A mathematical programming approach to fitting the adclus model , 1980 .

[11]  I. Borg,et al.  A model and algorithm for multidimensional scaling with external constraints on the distances , 1980 .

[12]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[13]  M. W. Richardson,et al.  Making a rating scale that measures. , 1933 .

[14]  C. Coombs A theory of data. , 1965, Psychology Review.

[15]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters 1)1)Report SP 52 of the Statistical Department of the Mathematical Centre, Amsterdam.. I , 1957 .

[16]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[17]  L. Guttman,et al.  The Quantification of a class of attributes : A theory and method of scale construction , 1941 .

[18]  Richard C. W. Kao,et al.  On a connection between factor analysis and multidimensional unfolding , 1960 .

[19]  Robert Summers,et al.  International Comparisons of Real Product and Purchasing Power , 1978 .

[20]  Ludovic Lebart,et al.  Techniques de la description statistique , 1979 .

[21]  R. E. Miles THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS , 1959 .

[22]  Bruce Bloxom,et al.  Constrained multidimensional scaling inN spaces , 1978 .

[23]  R. Shepard Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space , 1957 .

[24]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[25]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[26]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[27]  W. Hartmann Geometrische Modelle zur Analyse empirischer Daten , 1979 .

[28]  S. Schiffman Introduction to Multidimensional Scaling , 1981 .

[29]  J. Ramsay Confidence regions for multidimensional scaling analysis , 1978 .

[30]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[31]  F. Cailliez,et al.  Introduction à l'analyse des données , 1976 .

[32]  E. Mark Gold,et al.  Metric unfolding: Data requirement for unique solution & clarification of Schönemann's algorithm , 1973 .

[33]  P. Bentler,et al.  Functional relations in multidimensional scaling , 1980 .

[34]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[35]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[36]  R. Sibson Order Invariant Methods for Data Analysis , 1972 .

[37]  Joel Levine THE SPHERE OF INFLUENCE , 1972 .

[38]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[39]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[40]  Jean-Paul Benzecri,et al.  STATISTICAL ANALYSIS AS A TOOL TO MAKE PATTERNS EMERGE FROM DATA , 1969 .

[41]  Waldo R. Tobler,et al.  Spatial Interaction Patterns , 1976 .

[42]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters. II , 1957 .

[43]  D. G. Weeks,et al.  Restricted multidimensional scaling models , 1978 .

[44]  A. Tversky,et al.  Additive similarity trees , 1977 .

[45]  Elliot Noma,et al.  Constrained Nonmetric Multidimensional Scaling. , 1979 .

[46]  Ludovic Lebart,et al.  Technique de la Description Statistique , 1978 .

[47]  Shlomo Maital,et al.  Multidimensional scaling : Some econometric applications , 1978 .

[48]  Willem J. Heiser,et al.  13 Theory of multidimensional scaling , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[49]  L. Hubert,et al.  Quadratic assignment as a general data analysis strategy. , 1976 .

[50]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[51]  G. M. Southward,et al.  Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .

[52]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[53]  Yoshio Takane,et al.  Multidimensional successive categories scaling: A maximum likelihood method , 1981 .

[54]  Adi Raveh,et al.  Finding common seasonal patterns among time series: An MDS approach , 1980 .

[55]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[56]  R. Shepard Stimulus and response generalization: tests of a model relating generalization to distance in psychological space. , 1958, Journal of experimental psychology.

[57]  R. Shepard Stimulus and response generalization: deduction of the generalization gradient from a trace model. , 1958, Psychological review.

[58]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[59]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[60]  H. Theil System-wide explorations in international economics, input-output analysis, and marketing research , 1980 .

[61]  Y. Takane A MAXIMUM LIKELIHOOD METHOD FOR NONMETRIC MULTIDIMENSIONAL SCALING , 1978 .

[62]  G. Stewart Introduction to matrix computations , 1973 .

[63]  M. Hill Correspondence Analysis: A Neglected Multivariate Method , 1974 .

[64]  N. Cliff Orthogonal rotation to congruence , 1966 .

[65]  D. G. Weeks,et al.  A comparison of linear and monotone multidimensional scaling models. , 1979 .