Hybrid Bellman-Ford-Dijkstra algorithm

We consider the single-source shortest paths problem in a digraph with negative edge costs allowed. A hybrid of the BellmanFord and Dijkstra algorithms is suggested, improving the running time bound of BellmanFord for graphs with a sparse distribution of negative cost edges. The algorithm iterates Dijkstra several times without re-initializing the tentative value d(v) at vertices. At most k+2 iterations solve the problem, if for any vertex reachable from the source, there exists a shortest path to it with at most k negative cost edges.In addition, a new, straightforward proof is suggested that the BellmanFord algorithm produces a shortest paths tree.

[1]  Éva Tardos,et al.  Algorithm design , 2005 .

[2]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[3]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[4]  Peter Sanders,et al.  Combining hierarchical and goal-directed speed-up techniques for dijkstra's algorithm , 2008, JEAL.

[5]  Donald E. Knuth,et al.  A Generalization of Dijkstra's Algorithm , 1977, Inf. Process. Lett..

[6]  Russell Impagliazzo,et al.  Models of Greedy Algorithms for Graph Problems , 2004, SODA '04.

[7]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[8]  Donald B. Johnson,et al.  A Note on Dijkstra's Shortest Path Algorithm , 1973, JACM.

[9]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[10]  Robert A. Wagner,et al.  A Shortest Path Algorithm for Edge-Sparse Graphs , 1976, J. ACM.

[11]  E. A. Dinic The Fastest Algorithm for the Pert Problem with AND-and OR-Nodes (The New-Product-New-Technology Problem) , 1990, IPCO.

[12]  Allan Borodin,et al.  (Incremental) Priority Algorithms , 2002, SODA '02.

[13]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[14]  Andrew V. Goldberg,et al.  Shortest-path feasibility algorithms: An experimental evaluation , 2008, JEAL.

[15]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[16]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[17]  Seth Pettie,et al.  A Shortest Path Algorithm for Real-Weighted Undirected Graphs , 2005, SIAM J. Comput..

[18]  Andrew V. Goldberg,et al.  Buckets, heaps, lists, and monotone priority queues , 1997, SODA '97.